Table of Contents Author Guidelines Submit a Manuscript
Journal of Tropical Medicine
Volume 2017, Article ID 7496934, 11 pages
https://doi.org/10.1155/2017/7496934
Research Article

Synthesis, SAR, and Docking Studies Disclose 2-Arylfuran-1,4-naphthoquinones as In Vitro Antiplasmodial Hits

1Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
2Faculdade de Farmácia, UFSJ, Campus Divinópolis, Rua Sebastião Gonçalves Coelho 400, Chanadour, 35501-296 Divinópolis, MG, Brazil

Correspondence should be addressed to Alaíde Braga de Oliveira; rb.moc.arret@agarbediala

Received 16 June 2017; Revised 11 August 2017; Accepted 27 August 2017; Published 31 October 2017

Academic Editor: Marcel Tanner

Copyright © 2017 Tatiane Freitas Borgati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “World Malaria Report,” 2015, http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
  2. J. Y. Wang, W. C. Cao, C. Q. Shan et al., “Naphthoquine phosphate and its combination with artemisinine,” Acta Tropica, vol. 89, no. 3, pp. 375–381, 2004. View at Publisher · View at Google Scholar
  3. D. J. Krogstad, B. L. Herwaldt, and P. H. Schlesinger, “Antimalarial agents: specific treatment regimens.,” Antimicrobial Agents and Chemotherapy, vol. 32, no. 7, pp. 957–961, 1988. View at Publisher · View at Google Scholar
  4. M. Schlitzer, “Malaria chemotherapeutics parti: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development,” ChemMedChem, vol. 2, no. 7, pp. 944–986, 2007. View at Publisher · View at Google Scholar
  5. H. Hussain, K. Krohn, V. U. Ahmad et al., “Lapachol: an overview,” Special Issue Reviews and Accounts ARKIVOC, vol. 2, pp. 145–171, 2007. View at Google Scholar
  6. M. F. C. Cardoso, I. M. C. B. da Silva, H. M. dos Santos Júnior et al., “A new approach for the synthesis of 3-substituted cytotoxic nor-β-lapachones,” Journal of the Brazilian Chemical Society, vol. 24, no. 1, pp. 12–16, 2013. View at Google Scholar
  7. D.-O. Moon, Y. H. Choi, N.-D. Kim et al., “Anti-inflammatory effects of β-lapachone in lipopolysaccharide-stimulated BV2 microglia,” International Immunopharmacology, vol. 7, no. 4, pp. 506–514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Birth, W. C. Kao, and C. Hunte, “Structural analysis of atovaquone - inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action,” Nature Communications, vol. 4, no. 5, pp. 1–11, 2014. View at Google Scholar
  9. M. Fry and M. Pudney, “Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4'-chlorophenyl) cyclohexyl]-3- hydroxy-1,4-naphthoquinone (566C80),” Biochemical Pharmacology, vol. 43, no. 7, pp. 1545–1553, 1992. View at Publisher · View at Google Scholar
  10. A. B. Vaidya, M. S. Lashgari, L. G. Pologe, and J. Morrisey, “Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones,” Molecular and Biochemical Parasitology, vol. 58, no. 1, pp. 33–42, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. I. K. Srivastava, H. Rottenberg, and A. B. Vaidya, “Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite,” Journal of Biological Chemistry, vol. 272, no. 7, pp. 3961–3966, 1997. View at Publisher · View at Google Scholar
  12. J. E. Siregar, G. Kurisi, T. Kobayashi et al., “Direct evidence for the atovaquone action on the Plasmodium cytochrome bc1 complex,” Parasitology Internationalvol, vol. 63, no. 3, pp. 295–300, 2014. View at Google Scholar
  13. R. Khositnithikul, P. Tan-ariya, and M. Mungthin, “In vitro atovaquone/proguanil susceptibility and characterization of the cytochrome b gene of Plasmodium falciparum from different endemic regions of Thailand,” Malaria Journal, vol. 7, no. 23, pp. 1–5, 2008. View at Publisher · View at Google Scholar
  14. N. Fisher, R. A. Majid, T. Antoine et al., “Cytochrome bmutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc1 catalytic turnover and protein expression,” The Journal of Biological Chemistry, vol. 287, no. 13, pp. 9731–9741, 2012. View at Google Scholar
  15. M. Korsinczky, N. Chen, B. Kotecka, A. Saul, K. Rieckmann, and Q. Cheng, “Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 8, pp. 2100–2108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Patel, M. Booker, M. Krame et al., “Identification and characterization of small molecule inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase,” The Journal of Biological Chemistry, vol. 283, no. 50, pp. 35078–35085, 2008. View at Google Scholar
  17. V. Barton, N. Fisher, G. A. Biagini et al., “Inhibiting Plasmodium cytochrome bc1: a complex issue,” Current Opinion in Chemical Biology, vol. 14, no. 4, pp. 440–446, 2010. View at Publisher · View at Google Scholar
  18. S. K. Morais, S. G. Silva, C. N. Portela et al., “Bioactive dihydroxyfuranonaphthoquinones from the bark of Tabebuia incana A.H. Gentry (Bignoniaceae) and HPLC analysis of commercial pau d'arco and certified T.incana bark infusions,” Acta Amazonica, vol. 37, no. 1, pp. 99–102, 2007. View at Publisher · View at Google Scholar
  19. A. M. P. Silva, S. R. Paiva, M. R. Figueiredo, and M. A. C. Kaplan, “Atividade Biológica de Naftoquinonas de Espécies de Bignoniaceae,” Revista Fitos, vol. 7, no. 4, pp. 207–215, 2012. View at Google Scholar
  20. J. M. M. del Corral, M. A. Castro, A. B. Oliveira et al., “New cytotoxic furoquinones obtained from terpenyl-1, 4-naphthoquinones and 1, 4-anthracenediones,” Bioorganic & Medicinal Chemistry, vol. 14, no. 21, pp. 7231–7240, 2006. View at Publisher · View at Google Scholar
  21. J. M. M. del Corral, M. A. Castro, M. Gordaliza et al., “Synthesis and Biological Evaluation of Cytotoxic 6(7)-Alkyl-2-hydroxy-1, 4-naphthoquinones,” Archiv der Pharmazie, vol. 335, no. 9, pp. 427–437, 2002. View at Publisher · View at Google Scholar
  22. H. Rutner, “Analogues of lapachol as antitumor agents,” U.S. Patent 3,655,699, 1972.
  23. J. E. Carvalho, C. A. Camara, M. D. Vargas et al., “Naftoquinonas naturais e semi-sintéticas parcialmente hidrogenadas derivadas do lapachol com atividade citotóxica e antitumoral,” Br. Patent PI 0502766-7, 2005.
  24. E. N. da Silva Júnior, T. T. Guimarães, R. F. Menna-Barreto, and eyal, “The evaluation of quinonoid compounds against Trypanosoma cruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1,2,3-triazoles,” Bioorganic & Medicinal Chemistry, vol. 18, no. 9, pp. 3224–3230, 2010. View at Publisher · View at Google Scholar
  25. S. Gafner, J. Wolfender, M. Nianga et al., “Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots,” Phytochemistry, vol. 42, no. 5, pp. 1315–1320, 1996. View at Publisher · View at Google Scholar
  26. N. M. F. Lima, C. S. Correia, L. L. Leon et al., “Antileishmanial activity of lapachol analogues,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 7, pp. 757–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. L. H. Carvalho, Quimioterapia experimental antimalárica com extratos brutos de plantas e compostos quimicamente definidos [Master’s Degree in Parasitology], Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
  28. L. H. Carvalho, E. M. Rocha, D. S. Raslan et al., “In vitro activity of natural and synthetic naphthoquinones against erythrocytic stages of Plasmodium falciparum,” Brazilian Journal of Medical and Biological Research, vol. 21, no. 3, pp. 485–487, 1988. View at Google Scholar
  29. S. A. Gualberto, Síntese e atividades antiparasitária e antitumoral de naftoquinonas [Doctorate in Science], Faculdade de Farmácia, Universidade Federal de Minas Gerais, 2001.
  30. R. Ferreira, A. Oliveira, S. Gualberto, and R. Vitor, “Activity of natural and synthetic naphthoquinones against Toxoplasma gondii, in vitro and in murine models of infection,” Parasite, vol. 9, no. 3, pp. 261–269, 2002. View at Publisher · View at Google Scholar
  31. R. A. Ferreira, A. B. Oliveira, M. F. Ribeiro et al., “Toxoplasma gondii: in vitro and in vivo activities of the hydroxynaphthoquinone 2-hydroxy-3-(1-propen-3-phenyl)-1,4-naphthoquinone alone or combined with sulfadiazine,” Experimental Parasitology, vol. 113, no. 2, pp. 125–129, 2006. View at Publisher · View at Google Scholar
  32. R. A. Ferreira, A. B. de Oliveira, S. A. Gualberto et al., “New naphthoquinones and an alkaloid with in vitro activity against Toxoplasma gondii RH and EGS strains,” Experimental Parasitology, vol. 132, no. 4, pp. 450–457, 2012. View at Publisher · View at Google Scholar
  33. E. Pérez-Sacau, A. Estévez-Braun, A. G. Ravelo et al., “Antiplasmodial activity of naphthoquinones related to lapachol and ß-lapachone,” Chemistry & Biodiversity, vol. 2, no. 2, pp. 264–274, 2005. View at Google Scholar
  34. M. Duran-Lengua, A. N. Kamali, A. J. Cano et al., “Synthetic alkyl substituted quinones oxidize membrane proteins and arrest Plasmodium falciparum growth in vitro,” African Journal of Pharmacy and Pharmacology, vol. 9, no. 23, pp. 595–602, 2015. View at Publisher · View at Google Scholar
  35. A. Baramee, A. Coppin, M. Mortuaire et al., “Synthesis and in vitro activities of ferrocenic aminohydroxynaphthoquinones against Toxoplasma gondii and Plasmodium falciparum,” Bioorganic Medicinal Chemistry, vol. 14, no. 5, pp. 1294–1302, 2006. View at Publisher · View at Google Scholar
  36. M. T. Leffler and R. J. Hathaway, “Naphthoquinone antimalarials; 2-hydroxy-3-substituted-aminoethyl derivatives by the Mannich reaction,” Journal of the American Chemical Society, vol. 70, no. 10, pp. 3222-3223, 1948. View at Publisher · View at Google Scholar
  37. G. J. Kapadia, M. A. Azuine, V. Balasubramanian, and R. Sridhar, “Aminonaphthoquinones—a novel class of compounds with potent antimalarial activity against plasmodium falciparum,” Pharmacological Research, vol. 43, no. 4, pp. 363–367, 2001. View at Publisher · View at Google Scholar
  38. F. Nogueira and V. E. Rosário, “Methods for assessment of antimalarial activity in the different phases of the Plasmodium life cycle,” Revista Pan-Amazônica de Saúde, vol. 1, no. 3, pp. 109–124, 2010. View at Publisher · View at Google Scholar
  39. M. T. Makler, R. C. Piper, and W. K. Milhous, “Lactate dehydrogenase and the diagnosis of malaria,” Parasitology Today, vol. 14, no. 9, pp. 376-377, 1998. View at Publisher · View at Google Scholar
  40. T. Borgati, G. Pereira, G. Brandão et al., “Synthesis by click reactions and antiplasmodial activity of lupeol 1,2,3-triazole derivatives,” Journal of the Brazilian Chemical Society, vol. 28, no. 10, pp. 1850–1856, 2017. View at Publisher · View at Google Scholar
  41. W. Trager and J. B. Jensen, “Human malaria parasites in continuous culture,” Science, vol. 193, no. 4254, pp. 673–675, 1976. View at Publisher · View at Google Scholar · View at Scopus
  42. F. P. Varotti, A. C. C. Botelho, A. A. Andrade et al., “Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 11, pp. 3868–3874, 2008. View at Google Scholar
  43. H. M. Berman, G. J. Kleywegt, H. Nakamura, and J. L. Markley, “The Protein Data Bank archive as an open data resource,” Journal of Computer-Aided Molecular Design, vol. 28, no. 10, pp. 1009–1014, 2014. View at Publisher · View at Google Scholar
  44. S. Kokkonda, X. Deng, K. L. White et al., “Tetrahydro-2-naphthyl and 2-Indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity,” Journal of Medicinal Chemistry, vol. 59, no. 11, pp. 5416–5431, 2016. View at Publisher · View at Google Scholar
  45. L. Bordoli, F. Kiefer, K. Arnold et al., “Protein structure homology modeling using SWISS-MODEL workspace,” Nature Protocols, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Anandakrishnan, B. Aguilar, and A. V. Onufriev, “H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations,” Nucleic Acids Research, vol. 40, no. W1, pp. W537–W541, 2012. View at Publisher · View at Google Scholar
  47. G. M. Morris, H. Ruth, W. Lindstrom et al., “AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. ChemAxon, Chemicalize, http://chemicalize.com.
  49. E. Glaab, “Building a virtual ligand screening pipeline using free software: a survey,” Briefings in Bioinformatics, vol. 17, no. 2, pp. 352–366, 2016. View at Publisher · View at Google Scholar
  50. A. P. Carregal, F. V. Maciel, J. B. Carregal et al., “Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database,” Journal of Molecular Modeling, vol. 23, no. 111, pp. 1–9, 2017. View at Publisher · View at Google Scholar
  51. O. Trott and A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar
  52. J. J. P. Stewart, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, Colo, USA, 2016, http://openmopac.net.
  53. The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC, http://www.pymol.org.
  54. E. Yuriev and P. A. Ramsland, “Latest developments in molecular docking: 2010-2011 in review,” Journal of Molecular Recognition, vol. 26, no. 5, pp. 215–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. J. J. P. Stewart, “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters,” Journal of Molecular Modeling, vol. 19, no. 1, pp. 1–32, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Baker, “An algorithm for the location of transition states,” Journal of Computational Chemistry, vol. 7, no. 4, pp. 385–395, 1986. View at Publisher · View at Google Scholar
  57. S. Forli, M. E. Piche, M. F. Sanner et al., “Computational protein–ligand docking and virtual drug screening with the AutoDock suite,” Nature Protocols, vol. 11, no. 5, pp. 905–919, 2016. View at Publisher · View at Google Scholar
  58. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, Dassault Systèmes, San Diego, Calif, USA, 2016.
  59. S. C. Hooker, “The constitution of lapachol and its derivatives. Part III. The structure of the amylene chain,” Journal of the Chemical Society, vol. 69, pp. 1355–1381, 1896. View at Google Scholar
  60. K. H. Dudley and H. W. Miller, “Mercuric acetate oxidation of isolapachol,” The Journal of Organic Chemistry, vol. 32, no. 7, pp. 2341–2344, 1967. View at Publisher · View at Google Scholar
  61. J. Tonholo, L. R. Freitas, and F. C. Abreu, “Electrochemical properties of piological active heterocyclic naphthoquinones,” Journal of the Brazilian Chemical Society, vol. 9, no. 2, pp. 163–169, 1998. View at Publisher · View at Google Scholar