Table of Contents
Journal of Toxins
Volume 2013, Article ID 501876, 10 pages
http://dx.doi.org/10.1155/2013/501876
Research Article

Convulsive and Neurodegenerative Effects in Rats of Some Isolated Toxins from the Tityus bahiensis Scorpion Venom

1Laboratory of Pharmacology, Butantan Institute, Avenida Dr. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
2Disease Control Coordinating Agency of São Paulo State Public Health Ministry, 01246-000 São Paulo, SP, Brazil
3Laboratory of Biochemistry and Biophysics, Butantan Institute, 05503-900 São Paulo, SP, Brazil

Received 27 June 2013; Revised 10 September 2013; Accepted 13 September 2013

Academic Editor: Andreimar Martins Soares

Copyright © 2013 Luciene Toshie Takeishi Ossanai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Prendini and W. C. Wheeler, “Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing,” Cladistics, vol. 21, no. 5, pp. 446–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. FUNASA, Manual de Diagnostico e Tratamento de Acidentes por Animais Peçonhentos, Fundação Nacional de Saúde, Brasília, Brazil, 2nd edition, 2001.
  3. C. T. Cologna, S. Marcussi, J. R. Giglio, A. M. Soares, and E. C. Arantes, “Tityus serrulatus scorpion venom and toxins: an overview,” Protein and Peptide Letters, vol. 16, no. 8, pp. 920–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Becerril, S. Marangoni, and L. D. Possani, “Toxins and genes isolated from scorpions of the genus Tityus,” Toxicon, vol. 35, no. 6, pp. 821–835, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Trequattrini, F. Z. Zamudio, A. Petris, G. Prestipino, L. D. Possani, and F. Franciolini, “Tityus bahiensis toxin IV-5b selectively affects Na channel inactivation in chick dorsal root ganglion neurons,” Comparative Biochemistry and Physiology A, vol. 112, no. 1, pp. 21–28, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Lourenço, I. Lebrun, and V. A. C. Dorce, “Neurotoxic effects of fractions isolated from Tityus bahiensis scorpion venom (Perty, 1834),” Toxicon, vol. 40, no. 2, pp. 149–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. T. T. Ossanai, G. A. Lourenço, A. L. A. Nencioni, I. Lebrun, N. Yamanouye, and V. A. C. Dorce, “Effects of a toxin isolated from Tityus bahiensis scorpion venom on the hippocampus of rats,” Life Science, vol. 91, no. 7-8, pp. 230–236, 2012. View at Google Scholar
  8. M. Ismail, O. H. Osman, K. A. Gumaa, and M. A. Karrar, “Some pharmacological studies with scorpion Pandinus exitialis venom,” Toxicon, vol. 12, no. 1, pp. 75–82, 1974. View at Google Scholar · View at Scopus
  9. M. P. Revelo, E. A. Bambirra, A. P. Ferreira, C. R. Diniz, and C. Chávez-Olórtegui, “Body distribution of Tityus serrulatus scorpion venom in mice and effects of scorpion antivenom,” Toxicon, vol. 34, no. 10, pp. 1119–1125, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. P. A. Guidine, T. Moraes-Santos, A. R. Massensini, and M. F. Moraes, “Carbamazepine protects the CNS of Wistar rats against the central effects of scorpion envenomation,” Neurotoxicology, vol. 29, no. 1, pp. 136–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Clot-Faybesse, R. Guieu, H. Rochat, and C. Devaux, “Toxicity during early development of the mouse nervous system of a scorpion neurotoxin active on sodium channels,” Life Sciences, vol. 66, no. 3, pp. 185–192, 2000. View at Google Scholar
  12. E. A. Nunan, M. F. Moraes, V. N. Cardoso, and T. Moraes-Santos, “Effect of age on body distribution of Tityustoxin from Tityus serrulatus scorpion venom in rats,” Life Sciences, vol. 73, no. 3, pp. 319–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. A. Guidine, M. B. Mesquita, T. Moraes-Santos, A. R. Massensini, and M. F. Moraes, “Electroencephalographic evidence of brainstem recruitment during scorpion envenomation,” Neurotoxicology, vol. 30, no. 1, pp. 90–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. A. Nencioni, G. A. Lourenço, I. Lebrun, J. C. Florio, and V. A. C. Dorce, “Central effects of Tityus serrulatus and Tityus bahiensis scorpion venoms after intraperitoneal injection in rats,” Neuroscience Letters, vol. 463, no. 3, pp. 234–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego, Calif, USA, 4th edition, 1998.
  16. D. A. McCormick and D. Contreras, “On the cellular and network bases of epileptic seizures,” Annual Review of Physiology, vol. 63, pp. 815–846, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. R. de la Vega and L. D. Possani, “Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution,” Toxicon, vol. 46, no. 8, pp. 831–844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Romano-Silva, M. V. Gomez, and M. J. Brammer, “Modulation of Ca2+-stimulated glutamate release from synaptosomes by Na+ entry through tetrodotoxin-sensitive channels,” Biochemical Journal, vol. 304, no. 2, pp. 353–357, 1994. View at Google Scholar · View at Scopus
  19. M. V. Gomez, M. A. Romano-Silva, and M. A. M. Prado, “Effects of tityustoxin on central nervous system,” Toxin Reviews, vol. 14, no. 3, pp. 437–456, 1995. View at Google Scholar · View at Scopus
  20. A. R. Massensini, M. A. Romano-Silva, and M. V. Gomez, “Sodium channel toxins and neurotransmitter release,” Neurochemical Research, vol. 28, no. 10, pp. 1607–1611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. L. A. Nencioni, I. Lebrun, and V. A. C. Dorce, “A microdialysis study of glutamate concentration in the hippocampus of rats after TsTX toxin injection and blockade of toxin effects by glutamate receptor antagonists,” Pharmacology Biochemistry and Behavior, vol. 74, no. 2, pp. 455–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Kleinrok and L. Turski, “Kainic acid-induced wet dog shakes in rats. The relation to central neurotransmitters,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 314, no. 1, pp. 37–46, 1980. View at Google Scholar · View at Scopus
  23. K. C. Fone, A. J. Robinson, and C. A. Marsden, “Characterization of the 5-HT receptor subtypes involved in the motor behaviours produced by intrathecal administration of 5-HT agonists in rats,” British Journal of Pharmacology, vol. 103, no. 2, pp. 1547–1555, 1991. View at Google Scholar · View at Scopus
  24. E. J. Shin, H. J. Jeong, Y. H. Chung et al., “Decrease in the kainate-induced wet dog shake behavior in genetically epilepsy-prone rats: possible involvement of an impaired synaptic transmission to the 5-HT2A receptor,” Journal of Pharmacological Sciences, vol. 110, no. 3, pp. 401–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. B. A. Ellenbroek and A. R. Cools, “Apomorphine susceptibility and animal models for psychopathology: genes and environment,” Behavior Genetics, vol. 32, no. 5, pp. 349–361, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. P. J. F. Martins, J. N. Nobrega, S. Tufik, and V. D'Almeida, “Sleep deprivation-induced gnawing—relationship to changes in feeding behavior in rats,” Physiology & Behavior, vol. 93, no. 1-2, pp. 229–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Yankovsky, F. Andermann, and F. Dubeau, “Post-ictal forceful yawning in a patient with nondominant hemisphere epilepsy,” Epileptic Disorders, vol. 8, no. 1, pp. 65–69, 2006. View at Google Scholar · View at Scopus
  28. F. Sanna, S. Succu, M. R. Melis, and A. Argiolas, “Dopamine agonist-induced penile erection and yawning: differential role of D2-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats,” Behavioural Brain Research, vol. 230, no. 2, pp. 355–364, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Walusinski, “Yawning in diseases,” European Neurology, vol. 62, no. 3, pp. 180–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. N. Caviness, “Myoclonus,” Parkinsonism and Related Disorders, vol. 13, no. 3, pp. S375–S384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. I. M. Conceição, I. Lebrun, M. Cano-Abad et al., “Synergism between toxin-γ from Brazilian scorpion Tityus serrulatus and veratridine in chromaffin cells,” The American Journal of Physiology—Cell Physiology, vol. 274, no. 6, pp. C1745–C1754, 1998. View at Google Scholar · View at Scopus
  32. I. M. Conceição, A. Jurkiewicz, D. R. Fonseca et al., “Selective release of ATP from sympathetic nerves of rat vas deferens by the toxin TsTX-I from Brazilian scorpion Tityus serrulatus,” British Journal of Pharmacology, vol. 144, no. 4, pp. 519–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. A. Nencioni, F. F. Carvalho, I. Lebrun, V. A. C. Dorce, and M. R. L. Sandoval, “Neurotoxic effects of three fractions isolated from Tityus serrulatus scorpion venom,” Pharmacology and Toxicology, vol. 86, no. 4, pp. 149–155, 2000. View at Google Scholar · View at Scopus
  34. V. F. Teixeira, I. M. Conceição, I. Lebrun, A. L. A. Nencioni, and V. A. C. Dorce, “Intrahippocampal injection of TsTX-I, a beta-scorpion toxin, causes alterations in electroencephalographic recording and behavior in rats,” Life Sciences, vol. 87, no. 15-16, pp. 501–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. E. W. Lothman, E. H. Bertram III, and J. L. Stringer, “Functional anatomy of hippocampal seizures,” Progress in Neurobiology, vol. 37, no. 1, pp. 1–82, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Isomura, Y. Fujiwara-Tsukamoto, and M. Takada, “A network mechanism underlying hippocampal seizure-like synchronous oscillations,” Neuroscience Research, vol. 61, no. 3, pp. 227–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Zimmerman, M. Njunting, S. Ivens et al., “Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats,” European Journal of Neuroscience, vol. 27, no. 5, pp. 965–975, 2008. View at Google Scholar
  38. G. D. Hilton, J. L. Nunez, L. Bambrick, S. M. Thompson, and M. M. McCarthy, “Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca2+ from intracellular stores and is prevented by estradiol,” European Journal of Neuroscience, vol. 24, no. 11, pp. 3008–3016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. H. E. Scharfman, “The neurobiology of epilepsy,” Current Neurology and Neuroscience Reports, vol. 7, no. 4, pp. 348–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. G. D'Suze, S. Moncada, C. González, C. Sevcik, V. Aguilar, and A. Alagón, “Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting,” Toxicon, vol. 41, no. 3, pp. 367–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. D. Fukuhara, M. L. Reis, R. Dellalibera-Joviliano, F. Q. Cunha, and E. A. Donadi, “Increased plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in patients moderately or severely envenomed by Tityus serrulatus scorpion sting,” Toxicon, vol. 41, no. 1, pp. 49–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. V. L. Petricevich, “Cytokine and nitric oxide production following severe envenomation,” Current Drug Targets: Inflammation and Allergy, vol. 3, no. 3, pp. 325–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Schäfers and L. Sorkin, “Effect of cytokines on neuronal excitability,” Neuroscience Letters, vol. 437, no. 3, pp. 188–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Vezzani, S. Balosso, and T. Ravizza, “The role of cytokines in the pathophysiology of epilepsy,” Brain, Behavior, and Immunity, vol. 22, no. 6, pp. 797–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. G. Fujikawa, S. S. Shinmei, and B. Cai, “Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms,” Neuroscience, vol. 98, no. 1, pp. 41–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. C. McIntyre and K. L. Gilby, “Mapping seizure pathways in the temporal lobe,” Epilepsia, vol. 49, no. 3, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Witter and D. G. Amaral, “Hippocampal formation,” in The Rat Nervous System, G. Paxinos, Ed., pp. 635–704, Elsevier, New York, NY, USA, 3rd edition, 2004. View at Google Scholar
  48. G. Perea and A. Araque, “Communication between astrocytes and neurons: a complex language,” Journal of Physiology-Paris, vol. 96, no. 3-4, pp. 199–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Tsacopoulos, “Metabolic signaling between neurons and glial cells: a short review,” Journal of Physiology-Paris, vol. 96, no. 3-4, pp. 283–288, 2002. View at Publisher · View at Google Scholar · View at Scopus