Table of Contents
Journal of Toxins
Volume 2013 (2013), Article ID 720150, 7 pages
Research Article

Purification and Characterization of a Nonenzymatic Neurotoxin from Hippasa partita (Lycosidae) Spider Venom Gland Extract

1Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
2Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

Received 27 December 2012; Revised 25 March 2013; Accepted 9 May 2013

Academic Editor: Maria Elena De Lima

Copyright © 2013 S. Nagaraju and K. Kemparaju. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


India is a habitat for nearly one thousand four hundred forty-seven species of spiders under three hundred and sixty-five genera and sixty families. Our initial survey on toxic bite by spider revealed severe edema, itching, acute pain, and hemorrhage following tissue necrosis, which are the general symptoms of envenomation, but there are no reports of mortality. Significantly, Hippasa partita spider, commonly called “funnel web spider,” which is endemic in hilly regions of the Western Ghats is responsible for envenomation. In this study, a nonenzymatic neurotoxin has been purified from H. partita venom gland extract. Gel filtration and ion exchange chromatography were used to purify the toxin into homogeneity as shown by SDS-PAGE, RP-HPLC, and MALDI-TOF. Neurotoxin is devoid of enzymatic activities but causes intense neurotoxic symptoms. Neurotoxin is found to inhibit the twitch response of sciatic nerve gastrocnemius muscle preparation and is found to be postsynaptic in action. Neurotoxin is devoid of coagulant activity, edema, and hemorrhage and is nonlethal to mice (up to 5 mg/kg body weight). In conclusion, a neurotoxin, which is a principle agent in whole venom responsible for induced neurotoxic symptoms, has been purified and characterized.