Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2011, Article ID 407123, 12 pages
http://dx.doi.org/10.4061/2011/407123
Review Article

MicroRNA Role in Thyroid Cancer Development

Unit of Metabolic Bone Diseases, Department of Internal Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy

Received 1 December 2010; Accepted 3 March 2011

Academic Editor: Daniel Christophe

Copyright © 2011 Francesca Marini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. A. Calin and C. M. Croce, “MicroRNA-cancer connection: the beginning of a new tale,” Cancer Research, vol. 66, no. 15, pp. 7390–7394, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Z. Michael, S. M. O'Connor, N. G. Van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific MicroRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003. View at Google Scholar · View at Scopus
  4. G. A. Calin, C. G. Liu, C. Sevignani et al., “MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11755–11760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Calin, M. Ferracin, A. Cimmino et al., “A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 353, no. 17, pp. 1793–1801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. S. Eis, W. Tam, L. Sun et al., “Accumulation of miR-155 and BIC RNA in human B cell lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 10, pp. 3627–3632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. V. Iorio, M. Ferracin, C. G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Ciafrè, S. Galardi, A. Mangiola et al., “Extensive modulation of a set of microRNAs in primary glioblastoma,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1351–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Hutvagner, J. McLachlan, A. E. Pasquinelli, E. Balint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Tang, “siRNA and miRNA: an insight into RISCs,” Trends in Biochemical Sciences, vol. 30, no. 2, pp. 106–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Hutvagner and P. D. Zamore, “A microRNA in a multiple-turnover RNAi enzyme complex,” Science, vol. 297, no. 5589, pp. 2056–2060, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Zeng and B. R. Cullen, “Sequence requirements for micro RNA processing and function in human cells,” RNA, vol. 9, no. 1, pp. 112–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Llave, Z. Xie, K. D. Kasschau, and J. C. Carrington, “Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA,” Science, vol. 297, no. 5589, pp. 2053–2056, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Yekta, I. H. Shih, and D. P. Bartel, “MicroRNA-directed cleavage of HOXB8 mRNA,” Science, vol. 304, no. 5670, pp. 594–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Fabian, N. Sonenberg, and W. Filipowicz, “Regulation of mRNA translation and stability by microRNAs,” Annual Review of Biochemistry, vol. 79, pp. 351–379, 2010. View at Google Scholar · View at Scopus
  22. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. U. A. Ørom, F. C. Nielsen, and A. H. Lund, “MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation,” Molecular Cell, vol. 30, no. 4, pp. 460–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Doench and P. A. Sharp, “Specificity of microRNA target selection in translational repression,” Genes and Development, vol. 18, no. 5, pp. 504–511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. N. Nikiforova, G. C. Tseng, D. Steward, D. Diorio, and Y. E. Nikiforov, “MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 5, pp. 1600–1608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. He, K. Jazdzewski, W. Li et al., “The role of microRNA genes in papillary thyroid carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19075–19080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Pallante, R. Visone, M. Ferracin et al., “MicroRNA deregulation in human thyroid papillary carcinomas,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 497–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Tetzlaff, A. Liu, X. Xu et al., “Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues,” Endocrine Pathology, vol. 18, no. 3, pp. 163–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. T. Chen, N. Kitabayashi, X. K. Zhou, T. J. Fahey III, and T. Scognamiglio, “MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma,” Modern Pathology, vol. 21, no. 9, pp. 1139–1146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Wilson, “Cancer: microRNA expression provides clues about the aggressiveness of papillary thyroid carcinoma,” Nature Reviews Endocrinology, vol. 6, no. 8, p. 416, 2010. View at Google Scholar
  31. S. Y. Sheu, F. Grabellus, S. Schwertheim, S. Handke, K. Worm, and K. W. Schmid, “Lack of correlation between BRAF V600E mutational status and the expression profile of a distinct set of miRNAs in papillary thyroid carcinoma,” Hormone and Metabolic Research, vol. 41, no. 6, pp. 482–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. C. K. Chou, R. F. Chen, F. F. Chou et al., “MiR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF mutation,” Thyroid, vol. 20, no. 5, pp. 489–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Weber, R. E. Teresi, C. E. Broelsch, A. Frilling, and C. Eng, “A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3584–3591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Visone, P. Pallante, A. Vecchione et al., “Specific microRNAs are downregulated in human thyroid anaplastic carcinomas,” Oncogene, vol. 26, no. 54, pp. 7590–7595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Braun, C. Hoang-Vu, H. Dralle, and S. Hüttelmaier, “Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas,” Oncogene, vol. 29, no. 29, pp. 4237–4244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. M. Ricarte-Filho, C. S. Fuziwara, A. S. Yamashita, E. Rezende, M. J. Da-Silva, and E. T. Kimura, “Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer,” Translational Oncology, vol. 2, no. 4, pp. 236–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Takakura, N. Mitsutake, M. Nakashima et al., “Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells,” Cancer Science, vol. 99, no. 6, pp. 1147–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Mitomo, C. Maesawa, S. Ogasawara et al., “Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines,” Cancer Science, vol. 99, no. 2, pp. 280–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. N. Nikiforova, S. I. Chiosea, and Y. E. Nikiforov, “MicroRNA expression profiles in thyroid tumors,” Endocrine Pathology, vol. 20, no. 2, pp. 85–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Cahill, P. Smyth, S. P. Finn et al., “Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model,” Molecular Cancer, vol. 5, article 70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. L. K. Ashman, “The biology of stem cell factor and its receptor C-kit,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 10, pp. 1037–1051, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Kitamura and S. Hirota, “Kit as a human oncogenic tyrosine kinase,” Cellular and Molecular Life Sciences, vol. 61, no. 23, pp. 2924–2931, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. G. Natali, M. R. Nicotra, M. F. Di Renzo et al., “Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression,” British Journal of Cancer, vol. 68, no. 4, pp. 746–750, 1993. View at Google Scholar · View at Scopus
  44. P. G. Natali, M. R. Nicotra, A. B. Winkler, R. Cavaliere, A. Bigotti, and A. Ullrich, “Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor,” International Journal of Cancer, vol. 52, no. 2, pp. 197–201, 1992. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Matsuda, T. Takahashi, S. Nakamura et al., “Expression of the c-kit protein in human solid tumors and in corresponding fetal and adult normal tissues,” American Journal of Pathology, vol. 142, no. 1, pp. 339–346, 1993. View at Google Scholar · View at Scopus
  46. P. G. Natali, M. T. Berlingieri, M. R. Nicotra et al., “Transformation of thyroid epithelium is associated with loss of c-kit receptor,” Cancer Research, vol. 55, no. 8, pp. 1787–1791, 1995. View at Google Scholar · View at Scopus
  47. H. R. Chiang, L. W. Schoenfeld, J. G. Ruby et al., “Mammalian microRNAs: experimental evaluation of novel and previously annotated genes,” Genes and Development, vol. 24, no. 10, pp. 992–1009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. J. Adeniran, Z. Zhu, M. Gandhi et al., “Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas,” American Journal of Surgical Pathology, vol. 30, no. 2, pp. 216–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Visone, L. Russo, P. Pallante et al., “MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27 protein levels and cell cycle,” Endocrine-Related Cancer, vol. 14, no. 3, pp. 791–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Fusco and M. Santoro, “20 years of RET/PTC in thyroid cancer: clinico-pathological correlations,” Arquivos Brasileiros de Endocrinologia e Metabologia, vol. 51, no. 5, pp. 731–735, 2007. View at Google Scholar · View at Scopus
  51. W. S. Argraves, L. M. Greene, M. A. Cooley, and W. M. Gallagher, “Fibulins: physiological and disease perspectives,” EMBO Reports, vol. 4, no. 12, pp. 1127–1131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. W. M. Gallagher, L. M. Greene, M. P. Ryan et al., “Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues,” FEBS Letters, vol. 489, no. 1, pp. 59–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. K. M. Schulte, C. Jonas, R. Krebs, and H. D. Röher, “Activin A and activin receptors in thyroid cancer,” Thyroid, vol. 11, no. 1, pp. 3–14, 2001. View at Google Scholar · View at Scopus
  54. S. Sander, L. Bullinger, K. Klapproth et al., “MYC stimulates EZH2 expression by repression of its negative regulator miR-26a,” Blood, vol. 112, no. 10, pp. 4202–4212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. V. Iorio, M. Ferracin, C. G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. B. J. Henson, S. Bhattacharjee, D. M. O'Dee, E. Feingold, and S. M. Gollin, “Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy,” Genes Chromosomes and Cancer, vol. 48, no. 7, pp. 569–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Ichimi, H. Enokida, Y. Okuno et al., “Identification of novel microRNA targets based on microRNA signatures in bladder cancer,” International Journal of Cancer, vol. 125, no. 2, pp. 345–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Shi, J. Zhang, T. Pan et al., “MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation,” Brain Research, vol. 1312, pp. 120–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. X. Zhang, I. Neganova, S. Przyborski et al., “A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A,” Journal of Cell Biology, vol. 184, no. 1, pp. 67–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Liang, C.-M. Wong, Q. Ying et al., “MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2,” Hepatology, vol. 52, no. 5, pp. 1731–1740, 2010. View at Publisher · View at Google Scholar
  61. Y. Ito, H. Yoshida, C. Tomoda et al., “Telomerase activity in thyroid neoplasms evaluated by the expression of human telomerase reverse transcriptase (hTERT),” Anticancer Research, vol. 25, no. 1 B, pp. 509–514, 2005. View at Google Scholar · View at Scopus
  62. O. Gimm, A. Perren, L. P. Weng et al., “Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors,” American Journal of Pathology, vol. 156, no. 5, pp. 1693–1700, 2000. View at Google Scholar · View at Scopus
  63. P. Bruni, A. Boccia, G. Baldassarre et al., “PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells is mediated by p27(kip1),” Oncogene, vol. 19, no. 28, pp. 3146–3155, 2000. View at Google Scholar · View at Scopus
  64. T. Frisk, T. Foukakis, T. Dwight et al., “Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer,” Genes Chromosomes and Cancer, vol. 35, no. 1, pp. 74–80, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes and Development, vol. 22, no. 7, pp. 894–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Zen and C. Y. Zhang, “Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers,” Medicinal Research Reviews. In press.
  68. R. A. Dickins, M. T. Hemann, J. T. Zilfou et al., “Probing tumor phenotypes using stable and regulated synthetic microRNA precursors,” Nature Genetics, vol. 37, no. 11, pp. 1289–1295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with ‘antagomirs’,” Nature, vol. 438, no. 7068, pp. 685–689, 2005. View at Publisher · View at Google Scholar · View at Scopus