Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2012, Article ID 973497, 18 pages
http://dx.doi.org/10.1155/2012/973497
Review Article

Prognostic Factors of Papillary and Follicular Carcinomas in Japan Based on Data of Kuma Hospital

Department of Surgery, Kuma Hospital, 8-2-35, Shimoyamate-dori, Chuo-ku, Kobe 650-0011, Japan

Received 6 April 2011; Accepted 28 July 2011

Academic Editor: Nikola Besic

Copyright © 2012 Yasuhiro Ito and Akira Miyauchi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Ito, T. Seyama, T. Mizuno et al., “Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland,” Cancer Research, vol. 52, no. 5, pp. 1369–1371, 1992. View at Google Scholar · View at Scopus
  2. A. Sakamoto, N. Kasai, and H. Sugano, “Poorly differentiated carcinoma of the thyroid. A clinicopathologic entity for a high-risk group of papillary and follicular carcinomas,” Cancer, vol. 52, no. 10, pp. 1849–1855, 1983. View at Google Scholar · View at Scopus
  3. M. L. Carcangiu, G. Zampi, and J. Rosai, “Poorly differentiated ('insular') thyroid carcinoma. A reinterpretation of Langhans' 'wuchernde struma',” American Journal of Surgical Pathology, vol. 8, no. 9, pp. 655–668, 1984. View at Google Scholar · View at Scopus
  4. M. Sobrinho-Simoes, M. L. Carcangiu, J. Albores-Saavedra et al., “Poorly differentiated carcinoma,” in Pathology and Genetics of Tumous of Endocrine Organs, R. A. DeLeillis, R. V. Lloyd, P. U. Heitz et al., Eds., pp. 73–76, IARC Press, Lyon, France, 2004. View at Google Scholar
  5. The Japanese Society of Thyroid Surgery, General Rules for the Description of Thyroid Cancer, Kanehara Press, Tokyo, Japan, 6th edition, 2005.
  6. M. Volante, P. Collini, Y. E. Nikiforov et al., “Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach,” American Journal of Surgical Pathology, vol. 31, no. 8, pp. 1256–1264, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. Y. Ito, N. Amino, T. Yokozawa et al., “Ultrasonographic evaluation of thyroid nodules in 900 patients: comparison among ultrasonographic, cytological, and histological findings,” Thyroid, vol. 17, no. 12, pp. 1269–1276, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. Antonelli, P. Miccoli, M. Ferdeghini et al., “Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer,” Thyroid, vol. 5, no. 1, pp. 25–28, 1995. View at Google Scholar · View at Scopus
  9. T. Uruno, A. Miyauchi, K. Shimizu et al., “Usefulness of thyroglobulin measurement in fine-needle aspiration biopsy specimens for diagnosing cervical lymph node metastasis in patients with papillary thyroid cancer,” World Journal of Surgery, vol. 29, no. 4, pp. 483–485, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. Cady, R. Rossi, I. Hay, K. H. Cohn, and N. W. Thompson, “An expanded view of risk-group definition in differentiated thyroid carcinoma,” Surgery, vol. 104, no. 6, pp. 947–953, 1988. View at Google Scholar · View at Scopus
  11. L. H. Sobin and C. H. Wittekindeds, UICC; TNM Classification of Malignant Tumors, Wiley-Liss, New York, NY, USA, 6th edition, 2002.
  12. I. Sugitani, N. Kasai, Y. Fujimoto, and A. Yanagisawa, “A novel classification system for patients with PTC: addition of the new variables of large (3 cm or greater) nodal metastases and reclassification during the follow-up period,” Surgery, vol. 135, no. 2, pp. 139–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. I. D. Hay, E. J. Bergstralh, J. R. Goellner et al., “Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989,” Surgery, vol. 114, no. 6, pp. 1050–1058, 1993. View at Google Scholar · View at Scopus
  14. Y. Ito, K. Ichihara, H. Masuoka et al., “Establishment of an intraoperative staging system (iStage) by improving UICC TNM classification system for papillary thyroid carcinoma,” World Journal of Surgery, vol. 34, no. 11, pp. 2570–2580, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Y. Ito and A. Miyauchi, “Prognostic factors and therapeutic strategies for differentiated carcinomas of the thyroid,” Endocrine Journal, vol. 56, no. 2, pp. 177–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Passler, C. Scheuba, G. Prager et al., “Prognostic factors of papillary and follicular thyroid cancer: differences in an iodine-replete endemic goiter region,” Endocrine-Related Cancer, vol. 11, no. 1, pp. 131–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. F. D. Gilliland, W. C. Hunt, D. M. Morris, and C. R. Key, “Prognostic factors for thyroid carcinoma: a population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991,” Cancer, vol. 79, no. 3, pp. 564–573, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Y. Kim, S. J. Hong, J. M. Kim et al., “Prognostic parameters for recurrence of papillary thyroid microcarcinoma,” BMC Cancer, vol. 14, no. 8, p. 296, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. A. Fagin, “Familial nonmedullary thyroid carcinoma—the case for genetic susceptibility,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 2, pp. 342–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Sturgeon and O. H. Clark, “Familial nonmedullary thyroid cancer,” Thyroid, vol. 15, no. 6, pp. 588–593, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. D. W. Robinson and T. G. Orr, “Carcinoma of the thyroid and other diseases of the thyroid in identical twins,” Archive of Surgery, vol. 70, no. 6, pp. 923–928, 1955. View at Google Scholar
  22. J. Nemec, J. Soumar, and V. Zamrazil, “Familial occurrence of differential (non medullary) thyroid cancer,” Oncology, vol. 32, no. 3-4, pp. 151–157, 1975. View at Google Scholar · View at Scopus
  23. T. Pal, F. D. Vogl, P. O. Chappuis et al., “Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: a hospital-based study,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5307–5312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. D. E. Goldgar, D. F. Easton, L. A. Cannon-Albright, and M. H. Skolnick, “Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands,” Journal of the National Cancer Institute, vol. 86, no. 21, pp. 1600–1608, 1994. View at Google Scholar · View at Scopus
  25. R. F. Grossman, S. H. Tu, Q. Y. Duh et al., “Familial nonmedullary thyroid cancer: an emerging entity that warrants aggressive treatment,” Archives of Surgery, vol. 130, no. 8, pp. 892–899, 1995. View at Google Scholar · View at Scopus
  26. F. Triponez, M. Wong, C. Sturgeon et al., “Does familial non-medullary thyroid cancer adversely affect survival?” World Journal of Surgery, vol. 30, no. 5, pp. 787–793, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. C. Loh, “Familial nonmedullary thyroid carcinoma: a meta-review of case series,” Thyroid, vol. 7, no. 1, pp. 107–113, 1997. View at Google Scholar · View at Scopus
  28. F. Leprat, F. Bonichon, M. Guyot et al., “Familial non-medullary thyroid carcinoma: pathology review in 27 affected cases from 13 French families,” Clinical Endocrinology, vol. 50, no. 5, pp. 589–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Lupoli, G. Vitale, M. Caraglia et al., “Familial papillary thyroid microcarcinoma: a new clinical entity,” Lancet, vol. 353, no. 9153, pp. 637–639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. E. L. Maxwell, F. T. Hall, and J. L. Freeman, “Familial non-medullary thyroid cancer: a matched-case control study,” Laryngoscope, vol. 114, no. 12, pp. 2182–2186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Uchino, S. Noguchi, H. Kawamoto et al., “Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population,” World Journal of Surgery, vol. 26, no. 8, pp. 897–902, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. Y. Ito, K. Kakudo, M. Hirokawa et al., “Biological behavior and prognosis of familial papillary thyroid carcinoma,” Surgery, vol. 145, no. 1, pp. 100–105, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Y. Ito, T. Uruno, K. Nakano et al., “An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid,” Thyroid, vol. 13, no. 4, pp. 381–387, 2003. View at Google Scholar · View at Scopus
  34. Y. Ito, C. Tomoda, T. Uruno et al., “Papillary microcarcinoma of the thyroid: how should it be treated?” World Journal of Surgery, vol. 28, no. 11, pp. 1115–1121, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. Y. Ito and A. Miyauchi, “A therapeutic strategy for incidentally detected papillary microcarcinoma of the thyroid,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 3, pp. 240–248, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. Y. Ito, A. Miyauchi, H. Inoue et al., “An observational trial for papillary thyroid microcarcinoma in Japanese patients,” World Journal of Surgery, vol. 34, no. 1, pp. 28–35, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. I. Sugitani, K. Toda, K. Yamada, N. Yamamoto, M. Ikenaga, and Y. Fujimoto, “Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes,” World Journal of Surgery, vol. 34, no. 6, pp. 1222–1231, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. R. Harach, K. O. Franssila, and V. M. Wasenius, “Occult papillary carcinoma of the thyroid. A 'normal' finding in Finland. A systematic autopsy study,” Cancer, vol. 56, no. 3, pp. 531–538, 1985. View at Google Scholar · View at Scopus
  39. F. H. Fukunaga and R. Yatani, “Geographic pathology of occult thyroid carcinomas,” Cancer, vol. 36, no. 3, pp. 1095–1099, 1975. View at Google Scholar · View at Scopus
  40. S. E. Thorvaldsson, H. Tulinius, J. Bjornsson, and O. Bjarnason, “Latent thyroid carcinoma in Iceland at autopsy,” Pathology Research and Practice, vol. 188, no. 6, pp. 747–750, 1992. View at Google Scholar · View at Scopus
  41. K. Takebe, M. Date, Y. Yamamoto et al., “Mass screening for thyroid cancer with ultrasonography,” KARKINOS, vol. 7, no. 4, pp. 309–317, 1994 (Japanese). View at Google Scholar
  42. Y. Ito, T. Higashiyama, Y. Takamura et al., “Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection,” World Journal of Surgery, vol. 31, no. 11, pp. 2085–2091, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. I. Sugitani, Y. Fujimoto, K. Yamada, and N. Yamamoto, “Prospective outcomes of selective lymph node dissection for papillary thyroid carcinoma based on preoperative ultrasonography,” World Journal of Surgery, vol. 32, no. 11, pp. 2494–2502, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. Y. Ito, H. Masuoka, M. Fukushima et al., “Excellent prognosis of patients with solitary T1N0M0 papillary thyroid carcinoma who underwent thyroidectomy and elective lymph node dissection without radioiodine therapy,” World Journal of Surgery, vol. 34, no. 6, pp. 1285–1290, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. Y. Ito, C. Tomoda, T. Uruno et al., “Preoperative ultrasonographic examination for lymph node metastasis: usefulness when designing lymph node dissection for papillary microcarcinoma of the thyroid,” World Journal of Surgery, vol. 28, no. 5, pp. 498–501, 2004. View at Publisher · View at Google Scholar · View at PubMed
  46. Y. Ito, C. Tomoda, T. Uruno et al., “Ultrasonographically and anatomopathologically detectable node metastases in the lateral compartment as indicators of worse relapse-free survival in patients with papillary thyroid carcinoma,” World Journal of Surgery, vol. 29, no. 7, pp. 917–920, 2005. View at Publisher · View at Google Scholar · View at PubMed
  47. Y. Ito, A. Miyauchi, T. Jikuzono et al., “Risk factors contributing to a poor prognosis of papillary thyroid carcinoma: validity of UICC/AJCC TNM classification and stage grouping,” World Journal of Surgery, vol. 31, no. 4, pp. 838–848, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. Y. Ito and A. Miyauchi, “Lateral and mediastinal lymph node dissection in differentiated thyroid carcinoma: indications, benefits, and risks,” World Journal of Surgery, vol. 31, no. 5, pp. 905–915, 2007. View at Publisher · View at Google Scholar · View at PubMed
  49. Y. Ito and A. Miyauchi, “Lateral lymph node dissection guided by preoperative and intraoperative findings in differentiated thyroid carcinoma,” World Journal of Surgery, vol. 32, no. 5, pp. 729–739, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Ito, M. Fukushima, C. Tomoda et al., “Prognosis of patients with papillary thyroid carcinoma having clinically apparent metastasis to the lateral compartment,” Endocrine Journal, vol. 56, no. 6, pp. 759–766, 2009. View at Publisher · View at Google Scholar
  51. Y. Ito, M. Hirokawa, T. Jikuzono et al., “Extranodal tumor extension to adjacent organs predicts a worse cause-specific survival in patients with papillary thyroid carcinoma,” World Journal of Surgery, vol. 31, no. 6, pp. 1194–1201, 2007. View at Publisher · View at Google Scholar
  52. F. Pacini, F. Cetani, P. Miccoli et al., “Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine,” World Journal of Surgery, vol. 18, no. 4, pp. 600–604, 1994. View at Google Scholar
  53. M. Shoup, A. Stojadinovic, A. Nissan et al., “Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma,” Journal of the American College of Surgeons, vol. 197, no. 2, pp. 191–197, 2003. View at Publisher · View at Google Scholar · View at PubMed
  54. M. Haq and C. Harmer, “Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome,” Clinical Endocrinology, vol. 63, no. 1, pp. 87–93, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. Y. Orita, I. Sugitani, M. Matsuura et al., “Prognostic factors and the therapeutic strategy for patients with bone metastasis from differentiated thyroid carcinoma,” Surgery, vol. 147, no. 3, pp. 424–431, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. Y. Ito, H. Masuoka, M. Fukushima et al., “Prognosis and prognostic factors of patients with papillary carcinoma showing distant metastasis at surgery (M1 patients) in Japan,” Endocrine Journal, vol. 57, no. 6, pp. 523–531, 2010. View at Publisher · View at Google Scholar
  57. Y. Ito, C. Tomoda, T. Uruno et al., “Minimal extrathyroid extension does not affect the relapse-free survival of patients with papillary thyroid carcinoma measuring 4 cm or less over the age of 45 years,” Surgery Today, vol. 36, no. 1, pp. 12–18, 2006. View at Publisher · View at Google Scholar · View at PubMed
  58. Y. Ito, C. Tomoda, T. Uruno et al., “Prognostic significance of extrathyroid extension of papillary thyroid carcinoma: massive but not minimal extension affects the relapse-free survival,” World Journal of Surgery, vol. 30, no. 5, pp. 780–786, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. M. Fukushima, Y. Ito, M. Hirokawa, A. Miya, K. Shimizu, and A. Miyauchi, “Prognostic impact of extrathyroid extension and clinical lymph node metastasis in papillary thyroid carcinoma depend on carcinoma size,” World Journal of Surgery, vol. 34, no. 12, pp. 3007–3014, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. K. Asanuma, R. Kusama, M. Maruyama, M. Fujimori, and J. Amano, “Macroscopic extranodal invasion is a risk factor for tumor recurrence in papillary thyroid cancer,” Cancer Letters, vol. 164, no. 1, pp. 85–89, 2001. View at Publisher · View at Google Scholar
  61. H. Yamashita, S. Noguchi, N. Murakami, H. Kawamoto, and S. Watanabe, “Extracapsular invasion of lymph node metastasis is an indicator of distant metastasis and poor prognosis in patients with thyroid papillary carcinoma,” Cancer, vol. 80, no. 12, pp. 2268–2272, 1997. View at Publisher · View at Google Scholar
  62. J. R. Spires, K. T. Robbins, M. A. Luna, and R. M. Byers, “Metastatic papillary carcinoma of the thyroid: the significance of extranodal extension,” Head and Neck, vol. 11, no. 3, pp. 242–246, 1989. View at Google Scholar
  63. I. Macdonald, G. L. O’Hara, and R. A. Weber, “Carcinoma of the thyroid gland: a review of 106 cases,” California Medicine, vol. 86, no. 1, pp. 16–19, 1957. View at Google Scholar
  64. M. Noguchi, H. Yamada, and N. Ohta, “Regional lymph node metastases in well-differentiated thyroid carcinoma,” International Surgery, vol. 72, no. 2, pp. 100–103, 1987. View at Google Scholar
  65. S. Ahuja, H. Ernst, and K. Lenz, “Papillary thyroid carcinoma: occurrence and types of lymph node metastases,” Journal of Endocrinological Investigation, vol. 14, no. 7, pp. 543–549, 1991. View at Google Scholar
  66. Y. Ito, M. Hirokawa, T. Uruno et al., “Prevalence and biological behaviour of variants of papillary thyroid carcinoma: experience at a single institute,” Pathology, vol. 40, no. 6, pp. 617–622, 2008. View at Publisher · View at Google Scholar · View at PubMed
  67. H. Y. Chang, J. D. Lin, S. C. Chou, T. C. Chao, and C. Hsueh, “Clinical presentations and outcomes of surgical treatment of follicular variant of the papillary thyroid carcinomas,” Japanese Journal of Clinical Oncology, vol. 36, no. 11, pp. 688–693, 2006. View at Publisher · View at Google Scholar · View at PubMed
  68. J. Liu, B. Singh, G. Tallini et al., “Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity,” Cancer, vol. 107, no. 6, pp. 1255–1264, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. P. Hagag, N. Hod, E. Kummer, M. Cohenpour, T. Horne, and M. Weiss, “Follicular variant of papillary thyroid carcinoma: clinical-pathological characterization and long-term follow-up,” Cancer Journal, vol. 12, no. 4, pp. 275–282, 2006. View at Google Scholar
  70. T. L. Johnson, R. V. Lloyd, N. W. Thompson, W. H. Beierwaltes, and J. C. Sisson, “Prognostic implications of the tall cell variant of papillary thyroid carcinoma,” American Journal of Surgical Pathology, vol. 12, no. 1, pp. 22–27, 1988. View at Google Scholar
  71. A. M. Egea, J. M. R. Gonzalez, J. S. Perez, T. S. Cogollos, and P. Parrilla Paricio, “Prognostic value of the tall cell variety of papillary cancer of the thyroid,” European Journal of Surgical Oncology, vol. 19, no. 6, pp. 517–521, 1993. View at Google Scholar
  72. J. J. Michels, M. Jacques, M. Henry-Amar, and S. Bardet, “Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma,” Human Pathology, vol. 38, no. 2, pp. 212–219, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. Y. Ito, M. Hirokawa, M. Fukushima et al., “Prevalence and prognostic significance of poor differentiation and tall cell variant in papillary carcinoma in Japan,” World Journal of Surgery, vol. 32, no. 7, pp. 1535–1543, 2008. View at Publisher · View at Google Scholar · View at PubMed
  74. M. Urano, M. Abe, M. Kuroda et al., “Warthin-like tumor variant of papillary thyroid carcinoma: case report and literature review,” Pathology International, vol. 51, no. 9, pp. 707–712, 2001. View at Publisher · View at Google Scholar
  75. Z. W. Baloch and V. A. LiVolsi, “Warthin-like papillary carcinoma of the thyroid,” Archives of Pathology and Laboratory Medicine, vol. 124, no. 8, pp. 1192–1195, 2000. View at Google Scholar
  76. M. Ludvíková, A. Ryška, M. Korabečná, M. Rydlová, and M. Michal, “Oncocytic papillary carcinoma with lymphoid stroma (Warthin-like tumour) of the thyroid: a distinct entity with favourable prognosis,” Histopathology, vol. 39, no. 1, pp. 17–24, 2001. View at Publisher · View at Google Scholar
  77. S. M. Chow, J. K. C. Chan, S. C. K. Law et al., “Diffuse sclerosing variant of papillary thyroid carcinoma—clinical features and outcome,” European Journal of Surgical Oncology, vol. 29, no. 5, pp. 446–449, 2003. View at Publisher · View at Google Scholar
  78. A. K. Lam and C. Y. Lo, “Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution,” Annals of Surgical Oncology, vol. 13, no. 2, pp. 176–181, 2006. View at Publisher · View at Google Scholar · View at PubMed
  79. L. Falvo, L. Giacomelli, V. D'Andrea, A. Marzullo, G. Guerriero, and E. De Antoni, “Prognostic importance of sclerosing variant in papillary thyroid carcinoma,” American Surgeon, vol. 72, no. 5, pp. 438–444, 2006. View at Google Scholar
  80. M. Fukushima, Y. Ito, M. Hirokawa, H. Akasu, K. Shimizu, and A. Miyauchi, “Clinicopathologic characteristics and prognosis of diffuse sclerosing variant of papillary thyroid carcinoma in Japan: an 18-year experience at a single institution,” World Journal of Surgery, vol. 33, no. 5, pp. 958–962, 2009. View at Publisher · View at Google Scholar · View at PubMed
  81. A. Lugli, L. M. Terracciano, M. Oberholzer, L. Bubendorf, and L. Tornillo, “Macrofollicular variant of papillary carcinoma of the thyroid: a histologic, cytologic, and immunohistochemical study of 3 cases and review of the literature,” Archives of Pathology and Laboratory Medicine, vol. 128, no. 1, pp. 54–58, 2004. View at Google Scholar
  82. J. Albores-Saavedra, E. Gould, C. Vardaman, and F. Vuitch, “The macrofollicular variant of papillary thyroid carcinoma: a study of 17 cases,” Human Pathology, vol. 22, no. 12, pp. 1195–1205, 1991. View at Publisher · View at Google Scholar
  83. M. Fukushima, Y. Ito, M. Hirokawa et al., “Macrofollicular variant of papillary thyroid carcinoma: its clinicopathological features and long-term prognosis,” Endocrine Journal, vol. 56, no. 3, pp. 503–508, 2009. View at Publisher · View at Google Scholar
  84. K. M. Dalal, D. Moraitis, C. Iwamoto, A. R. Shaha, S. G. Patel, and R. A. Ghossein, “Clinical curiosity: cribriform-morular variant of papillary thyroid carcinoma,” Head and Neck, vol. 28, no. 5, pp. 471–476, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. C. Tomoda, A. Miyauchi, T. Uruno et al., “Cribriform-morular variant of papillary thyroid carcinoma: clue to early detection of familial adenomatous polyposis-associated colon cancer,” World Journal of Surgery, vol. 28, no. 9, pp. 886–889, 2004. View at Publisher · View at Google Scholar
  86. Y. Ito, M. Hirokawa, T. Uruno et al., “Biological behavior and prognosis of encapsulated papillary carcinoma of the thyroid: experience of a Japanese hospital for thyroid care,” World Journal of Surgery, vol. 32, no. 8, pp. 1789–1794, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. Z. W. Baloch, K. Shafique, M. Flannagan, and V. A. LiVolsi, “Encapsulated classic and follicular variants of papillary thyroid carcinoma: comparative clinicopathologic study,” Endocrine Practice, vol. 16, no. 6, pp. 952–959, 2010. View at Publisher · View at Google Scholar · View at PubMed
  88. I. Sugitani, K. Toda, N. Yamamoto, A. Sakamoto, and Y. Fujimoto, “Re-evaluation of histopathological factors affecting prognosis of differentiated thyroid carcinoma in an iodine-sufficient country,” World Journal of Surgery, vol. 34, no. 6, pp. 1265–1273, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. M. Volante, I. Rapa, and M. Papotti, “Poorly differentiated thyroid carcinoma: diagnostic features and controversial issues,” Endocrine Pathology, vol. 19, no. 3, pp. 150–155, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. D. Hiltzik, D. L. Carlson, R. M. Tuttle et al., “Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients,” Cancer, vol. 106, no. 6, pp. 1286–1295, 2006. View at Publisher · View at Google Scholar · View at PubMed
  91. E. A. Ha, E. Ismail, M. Abbas, and K. Ouf, “MIB-1 index, S-phase fraction, mitotic figure count, and SBR histologic grading in invasive breast carcinoma: a comparative study,” Breast Journal, vol. 7, no. 2, pp. 106–110, 2001. View at Publisher · View at Google Scholar
  92. P. Kurki, M. Vanderlaan, and F. Dolbeare, “Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle,” Experimental Cell Research, vol. 166, no. 1, pp. 209–219, 1986. View at Google Scholar
  93. G. Cattoretti, M. H. G. Becker, G. Key et al., “Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections,” Journal of Pathology, vol. 168, no. 4, pp. 357–363, 1992. View at Publisher · View at Google Scholar · View at PubMed
  94. R. P. Sullivan, G. Mortimer, and I. O. Muircheartaigh, “Cell proliferation in breast tumours: analysis of histological parameters Ki67 and PCNA expression,” Irish Journal of Medical Science, vol. 162, no. 9, pp. 343–347, 1993. View at Google Scholar
  95. J. W. Hoyt, A. M. Gown, D. K. Kim, and M. S. Berger, “Analysis of proliferative grade in glial neoplasms using antibodies to the Ki-67 defined antigen and PCNA in formalin fixed, deparaffinized tissues,” Journal of Neuro-Oncology, vol. 24, no. 2, pp. 163–169, 1995. View at Publisher · View at Google Scholar
  96. A. Sofiadis, E. Tani, T. Foukakis et al., “Diagnostic and prognostic potential of MIB-1 proliferation index in thyroid fine needle aspiration biopsy,” International Journal of Oncology, vol. 35, no. 2, pp. 369–374, 2009. View at Publisher · View at Google Scholar
  97. Y. Ito, A. Miyauchi, K. Kakudo, M. Hirokawa, K. Kobayashi, and A. Miya, “Prognostic significance of Ki-67 labeling index in papillary thyroid carcinoma,” World Journal of Surgery, vol. 34, no. 12, pp. 3015–3021, 2010. View at Publisher · View at Google Scholar · View at PubMed
  98. K. E. Mercer and C. A. Pritchard, “Raf proteins and cancer: B-Raf is identified as a mutational target,” Biochimica et Biophysica Acta, vol. 1653, no. 1, pp. 25–40, 2003. View at Publisher · View at Google Scholar
  99. S. Torii, K. Nakayama, T. Yamamoto, and E. Nishida, “Regulatory mechanisms and function of ERK MAP kinases,” Journal of Biochemistry, vol. 136, no. 5, pp. 557–561, 2004. View at Publisher · View at Google Scholar · View at PubMed
  100. M. Kohno and J. Pouyssegur, “Targeting the ERK signaling pathway in cancer therapy,” Annals of Medicine, vol. 38, no. 3, pp. 200–211, 2006. View at Publisher · View at Google Scholar · View at PubMed
  101. M. J. Garnett and R. Marais, “Guilty as charged: B-RAF is a human oncogene,” Cancer Cell, vol. 6, no. 4, pp. 313–319, 2004. View at Publisher · View at Google Scholar · View at PubMed
  102. K. H. Kim, D. W. Kang, S. H. Kim, I. O. Seong, and D. Y. Kang, “Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population,” Yonsei Medical Journal, vol. 45, no. 5, pp. 818–821, 2004. View at Google Scholar
  103. T. Y. Kim, W. B. Kim, Y. S. Rhee et al., “The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma,” Clinical Endocrinology, vol. 65, no. 3, pp. 364–368, 2006. View at Publisher · View at Google Scholar · View at PubMed
  104. T. Fukushima, S. Suzuki, M. Mashiko et al., “BRAF mutations in papillary carcinomas of the thyroid,” Oncogene, vol. 22, no. 41, pp. 6455–6457, 2003. View at Publisher · View at Google Scholar · View at PubMed
  105. H. Namba, M. Nakashima, T. Hayashi et al., “Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 9, pp. 4393–4397, 2003. View at Publisher · View at Google Scholar
  106. A. J. Adeniran, Z. Zhu, M. Gandhi et al., “Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas,” American Journal of Surgical Pathology, vol. 30, no. 2, pp. 216–222, 2006. View at Publisher · View at Google Scholar
  107. L. Fugazzola, E. Peuxeddu, N. Avenia et al., “Correlation between B-RAFV600E mutation and clinicopathologic parameters in papillary thyroid carcinoma: data from a multicentric Italia study and review of the literature,” Endocrine Related Cancer, vol. 13, no. 2, pp. 455–463, 2006. View at Google Scholar
  108. E. Kebebew, J. Weng, J. Bauer et al., “The prevalence and prognostic value of BRAF mutation in thyroid cancer,” Annals of Surgery, vol. 246, no. 3, pp. 466–470, 2007. View at Publisher · View at Google Scholar · View at PubMed
  109. M. Xing, W. H. Westra, R. P. Tufano et al., “BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6373–6379, 2005. View at Publisher · View at Google Scholar · View at PubMed
  110. I. Yasuhiro, H. Yoshida, R. Maruo et al., “BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients,” Endocrine Journal, vol. 56, no. 1, pp. 89–97, 2009. View at Publisher · View at Google Scholar
  111. C. Lupi, R. Giannini, C. Ugolini et al., “Extensive clinical experience: association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4085–4090, 2007. View at Publisher · View at Google Scholar · View at PubMed
  112. M. N. Nikiforova, E. T. Kimura, M. Gandhi et al., “BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5399–5404, 2003. View at Publisher · View at Google Scholar
  113. Y. Ito, M. Hirokawa, T. Higashiyama et al., “Prognosis and prognostic factors of follicular carcinoma in Japan: Importance of postoperative pathological examination,” World Journal of Surgery, vol. 31, no. 7, pp. 1417–1424, 2007. View at Publisher · View at Google Scholar · View at PubMed
  114. H. W. Mueller-Gaertner, H. T. Brzac, and W. Rehpenning, “Prognostic indices for tumor relapse and tumor mortality in follicular thyroid carcinoma,” Cancer, vol. 67, no. 7, pp. 1903–1911, 1991. View at Google Scholar
  115. W. J. Simpson, S. E. McKinney, J. S. Carruthers, M. K. Gospodarowicz, S. B. Sutcliffe, and T. Panzarella, “Papillary and follicular thyroid cancer,” American Journal of Medicine, vol. 83, no. 3, pp. 479–488, 1987. View at Google Scholar
  116. A. R. Shaha, T. R. Loree, J. P. Shah et al., “Prognostic factors and risk group analysis in follicular carcinoma of the thyroid,” Surgery, vol. 118, no. 6, pp. 1131–1138, 1995. View at Publisher · View at Google Scholar
  117. G. Crile Jr., K. I. Pontius, and W. A. Hawk, “Factors influencing the survival of patients with follicular carcinoma of the thyroid gland,” Surgery Gynecology and Obstetrics, vol. 160, no. 5, pp. 409–413, 1985. View at Google Scholar
  118. H. Joensuu, P. J. Klemi, R. Paul, and J. Tuominen, “Survival and prognostic factors in thyroid carcinoma,” Acta Radiologica Oncology, vol. 25, no. 3, pp. 167–170, 1986. View at Google Scholar
  119. J. Zidan, S. Kassem, and A. Kuten, “Follicular carcinoma of the thyroid gland: Prognostic factors, treatment, and survival,” American Journal of Clinical Oncology, vol. 23, no. 1, pp. 1–5, 2000. View at Publisher · View at Google Scholar
  120. J. Witte, P. E. Goretzki, J. Dieken, D. Simon, and H. D. Röher, “Importance of lymph node metastases in follicular thyroid cancer,” World Journal of Surgery, vol. 26, no. 8, pp. 1017–1022, 2002. View at Publisher · View at Google Scholar · View at PubMed
  121. N. Besic, J. Zgajnar, M. Hocevar, and S. Frkovic-Grazio, “Is patient's age a prognostic factor for follicular thyroid carcinoma in the TNM classification system?” Thyroid, vol. 15, no. 5, pp. 439–448, 2005. View at Publisher · View at Google Scholar · View at PubMed
  122. S. M. Chow, S. C. K. Law, W. M. Mendenhall et al., “Follicular thyroid carcinoma: prognostic factors and the role of radioiodine,” Cancer, vol. 95, no. 3, pp. 488–498, 2002. View at Publisher · View at Google Scholar · View at PubMed
  123. Y. Ito, M. Fukushima, T. Yabuta et al., “Prevalence and prognosis of familial follicular thyroid carcinoma,” Endocrine Journal, vol. 55, no. 5, pp. 847–852, 2008. View at Publisher · View at Google Scholar
  124. C. Y. Lo, W. F. Chan, K. Y. Lam, and K. Y. Wan, “Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival,” Annals of Surgery, vol. 242, no. 5, pp. 708–715, 2005. View at Publisher · View at Google Scholar
  125. R. Asari, O. Koperek, C. Scheuba et al., “Follicular thyroid carcinoma in an iodine-replete endemic goiter region: a prospectively collected, retrospectively analyzed clinical trial,” Annals of Surgery, vol. 249, no. 6, pp. 1023–1031, 2009. View at Publisher · View at Google Scholar · View at PubMed
  126. E. Yutan and O. H. Clark, “Hurthle cell carcinoma,” Current Treatment Options in Oncology, vol. 2, no. 4, pp. 331–335, 2001. View at Google Scholar
  127. Y. Kushchayeva, Q. Y. Duh, E. Kebebew, and O. H. Clark, “Prognostic indications for Hürthle cell cancer,” World Journal of Surgery, vol. 28, no. 12, pp. 1266–1270, 2004. View at Publisher · View at Google Scholar · View at PubMed
  128. C. S. Grant, I. D. Hay, J. J. Ryan, E. J. Bergstralh, L. M. Rainwater, and J. R. Goellner, “Diagnostic and prognostic utility of flow cytometric DNA measurements in follicular thyroid tumors,” World Journal of Surgery, vol. 14, no. 3, pp. 283–290, 1990. View at Publisher · View at Google Scholar
  129. P. L. Haigh and D. R. Urbach, “The treatment and prognosis of Hürthle cell follicular thyroid carcinoma compared with its non-Hürthle cell counterpart,” Surgery, vol. 138, no. 6, pp. 1152–1158, 2005. View at Publisher · View at Google Scholar · View at PubMed
  130. N. Besic, M. Auersperg, and R. Golouh, “Prognostic factors in follicular carcinoma of the thyroid—a multivariate survival analysis,” European Journal of Surgical Oncology, vol. 25, no. 6, pp. 599–605, 1999. View at Publisher · View at Google Scholar · View at PubMed
  131. K. Sugino, K. Ito, T. Mimura, K. Kameyama, H. Iwasaki, and K. Ito, “Hürthle cell tumor of the thyroid: analysis of 188 patients,” World Journal of Surgery, vol. 25, no. 9, pp. 1160–1163, 2001. View at Google Scholar