Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2013 (2013), Article ID 148157, 8 pages
http://dx.doi.org/10.1155/2013/148157
Review Article

The Use of TSH in Determining Thyroid Disease: How Does It Impact the Practice of Medicine in Pregnancy?

1Georgetown University School of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
2Departments of Oncology, Medicine, Pharmacology, and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA
3Departments of Obstetrics and Gynecology, Georgetown University Medical Center, Washington, DC 20057, USA
4Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, LL, S-166, 3800 Reservoir Road NW, Washington, DC 20057, USA

Received 15 October 2012; Accepted 9 April 2013

Academic Editor: Fereidoun Azizi

Copyright © 2013 Offie P. Soldin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grossmann, B. D. Weintraub, and M. W. Szkudlinski, “Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological, and therapeutic implications for the glycoprotein hormone family,” Endocrine Reviews, vol. 18, no. 4, pp. 476–501, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Baloch, P. Carayon, B. Conte-Devolx et al., “Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease,” Thyroid, vol. 13, no. 1, pp. 3–126, 2003. View at Google Scholar · View at Scopus
  3. N. Benhadi, E. Fliers, T. J. Visser, J. B. Reitsma, and W. M. Wiersinga, “Pilot study on the assessment of the setpoint of the hypothalamus-pituitary-thyroid axis in healthy volunteers,” European Journal of Endocrinology, vol. 162, no. 2, pp. 323–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. W. Meikle, J. D. Stringham, M. G. Woodward, and J. C. Nelson, “Hereditary and environmental influences on the variation of thyroid hormones in normal male twins,” Journal of Clinical Endocrinology and Metabolism, vol. 66, no. 3, pp. 588–592, 1988. View at Google Scholar · View at Scopus
  5. H. J. Baskin, R. H. Cobin, D. S. Duick et al., “American association of clinical endocrinologists medical guidelines for clinical practice for the evaluation and treatment of hyperthyroidism and hypothyroidism,” Endocrine Practice, vol. 8, no. 6, pp. 457–469, 2002. View at Google Scholar
  6. B. R. Haugen, “Drugs that suppress TSH or cause central hypothyroidism,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 23, no. 6, pp. 793–800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. J. Beckett and A. D. Toft, “First-line thyroid function tests—TSH alone is not enough,” Clinical Endocrinology, vol. 58, no. 1, pp. 20–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Rawlins and W. L. Roberts, “Performance characteristics of six third-generation assays for thyroid-stimulating hormone,” Clinical Chemistry, vol. 50, no. 12, pp. 2338–2344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. W. Ladenson, P. A. Singer, K. B. Ain et al., “American thyroid association guidelines for detection of thyroid dysfunction,” Archives of Internal Medicine, vol. 160, no. 11, pp. 1573–1575, 2000. View at Google Scholar · View at Scopus
  10. C. A. Spencer, Thyroid Function Tests: Assay of Thyroid Hormones and Related Substances, Thyroid Manager, 2010.
  11. A. Stagnaro-Green, M. Abalovich, E. Alexander et al., “Guidelines of the American thyroid association for the diagnosis and management of thyroid disease during pregnancy and postpartum,” Thyroid, vol. 21, no. 10, pp. 1081–1125, 2011. View at Publisher · View at Google Scholar
  12. L. M. Thienpont, K. van Uytfanghe, G. Beastall et al., “Report of the IFCC working group for standardization of thyroid function tests—part 2: free thyroxine and free triiodothyronine,” Clinical Chemistry, vol. 56, no. 6, pp. 912–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Silvio, K. J. Swapp, S. L. La'ulu, K. Hansen-Suchy, and W. L. Roberts, “Method specific second-trimester reference intervals for thyroid-stimulating hormone and free thyroxine,” Clinical Biochemistry, vol. 42, no. 7-8, pp. 750–753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. van Houcke, K. van Uytfanghe, E. Shimizu, W. Tani, M. Umemoto, and L. M. Thienpont, “IFCC international conventional reference procedure for the measurement of free thyroxine in serum: international federation of clinical chemistry and laboratory medicine (IFCC) working group for standardization of thyroid function tests (WG-STFT)(1),” Clinical Chemistry and Laboratory Medicine, vol. 49, no. 8, pp. 1275–1281, 2011. View at Publisher · View at Google Scholar
  15. L. M. Thienpont, “A major step forward in the routine measurement of serum free thyroid hormones,” Clinical Chemistry, vol. 54, no. 4, pp. 625–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Thienpont, G. Beastall, N. D. Christofides et al., “Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 7, pp. 934–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. van Uytfanghe, D. Stöckl, H. A. Ross, and L. M. Thienpont, “Use of frozen sera for FT4 standardization: investigation by equilibrium dialysis combined with isotope dilution-mass spectrometry and immunoassay,” Clinical Chemistry, vol. 52, no. 9, pp. 1817–1821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. W. Steele, E. Wang, G. G. Klee et al., “Analytic bias of thyroid function tests: analysis of a college of American pathologists fresh frozen serum pool by 3900 clinical laboratories,” Archives of Pathology and Laboratory Medicine, vol. 129, no. 3, pp. 310–317, 2005. View at Google Scholar · View at Scopus
  19. J. R. Stockigt and C. F. Lim, “Medications that distort in vitro tests of thyroid function, with particular reference to estimates of serum free thyroxine,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 23, no. 6, pp. 753–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Stockigt, “Free thyroid hormone measurement: a critical appraisal,” Endocrinology and Metabolism Clinics of North America, vol. 30, no. 2, pp. 265–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. P. E. Belchetz, “Idiopathic hypopituitarism with biologically inactive TSH,” Proceedings of the Royal Society of Medicine, vol. 69, no. 6, pp. 428–429, 1976. View at Google Scholar · View at Scopus
  22. G. Faglia, P. Beck Peccoz, M. Ballabio, and C. Nava, “Excess of β-subunit of thyrotropin (TSH) in patients with idiopathic central hypothyroidism due to the secretion of TSH with reduced biological activity,” Journal of Clinical Endocrinology and Metabolism, vol. 56, no. 5, pp. 908–914, 1983. View at Google Scholar · View at Scopus
  23. J. M. Hershman and J. A. Pittman Jr., “Utility of the radioimmunoassay of serum thyrotrophin in man,” Annals of Internal Medicine, vol. 74, no. 4, pp. 481–490, 1971. View at Google Scholar · View at Scopus
  24. D. Glinoer, P. de Nayer, C. Robyn, B. Lejeune, J. Kinthaert, and S. Meuris, “Serum levels of intact human chorionic gonadotropin (HCG) and its free α and β subunits, in relation to maternal thyroid stimulation during normal pregnancy,” Journal of Endocrinological Investigation, vol. 16, no. 11, pp. 881–888, 1993. View at Google Scholar · View at Scopus
  25. M. Ballabio, M. Poshyachinda, and R. P. Ekins, “Pregnancy-induced changes in thyroid function: role of human chorionic gonadotropin as putative regulator of maternal thyroid,” Journal of Clinical Endocrinology and Metabolism, vol. 73, no. 4, pp. 824–831, 1991. View at Google Scholar · View at Scopus
  26. D. Glinoer, M. F. Soto, P. Bourdoux et al., “Pregnancy in patients with mild thyroid abnormalities: maternal and neonatal repercussions,” Journal of Clinical Endocrinology and Metabolism, vol. 73, no. 2, pp. 421–427, 1991. View at Google Scholar · View at Scopus
  27. T. M. Goodwin, M. Montoro, J. H. Mestman, A. E. Pekary, and J. M. Hershman, “The role of chorionic gonadotropin in transient hyperthyroidism of hyperemesis gravidarum,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 5, pp. 1333–1337, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Lockwood, D. G. Grenache, and A. M. Gronowski, “Serum human chorionic gonadotropin concentrations greater than 400,000 IU/L are invariably associated with suppressed serum thyrotropin concentrations,” Thyroid, vol. 19, no. 8, pp. 863–868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. B. Ain, Y. Mori, and S. Refetoff, “Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevation of serum TBG concentration,” Journal of Clinical Endocrinology and Metabolism, vol. 65, no. 4, pp. 689–696, 1987. View at Google Scholar · View at Scopus
  30. A. Stagnaro-Green, M. Abalovich, E. Alexander et al., “Guidelines of the American thyroid association for the diagnosis and management of thyroid disease during pregnancy and postpartum,” Thyroid, vol. 21, no. 10, pp. 1081–1125, 2011. View at Publisher · View at Google Scholar
  31. L. De Groot, M. Abalovich, E. K. Alexander et al., “Management of thyroid dysfunction during pregnancy and postpartum: an endocrine society clinical practice guideline,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 8, pp. 2543–2565, 2012. View at Publisher · View at Google Scholar
  32. U. Feldt-Rasmussen, A. S. Bliddal Mortensen, A. K. Rasmussen, M. Boas, L. Hilsted, and K. Main, “Challenges in interpretation of thyroid function tests in pregnant women with autoimmune thyroid disease,” Journal of Thyroid Research, vol. 2011, Article ID 598712, 7 pages, 2011. View at Publisher · View at Google Scholar
  33. R. Negro, O. P. Soldin, M. J. Obregon, and A. Stagnaro-Green, “Hypothyroxinemia and pregnancy,” Endocrine Practice, vol. 17, no. 3, pp. 422–429, 2011. View at Publisher · View at Google Scholar
  34. N. Kahric-Janicic, S. J. Soldin, O. P. Soldin, T. West, J. Gu, and J. Jonklaas, “Tandem mass spectrometry improves the accuracy of free thyroxine measurements during pregnancy,” Thyroid, vol. 17, no. 4, pp. 303–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Yue, A. L. Rockwood, T. Sandrock, S. L. La'ulu, M. M. Kushnir, and A. W. Meikle, “Free thyroid hormones in serum by direct equilibrium dialysis and online solid-phase extraction-liquid chromatography/tandem mass spectrometry,” Clinical Chemistry, vol. 54, no. 4, pp. 642–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. H. Lee, C. A. Spencer, J. H. Mestman et al., “Free T4 immunoassays are flawed during pregnancy,” The American Journal of Obstetrics and Gynecology, vol. 200, no. 3, pp. 260.e1–260.e6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Brabant, K. Prank, C. Hoang-Vu, R. D. Hesch, and A. von zur Muhlen, “Hypothalamic regulation of pulsatile thyrotopin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 72, no. 1, pp. 145–150, 1991. View at Google Scholar · View at Scopus
  38. L. Mebis and G. van den Berghe, “The hypothalamus-pituitary-thyroid axis in critical illness,” The Netherlands Journal of Medicine, vol. 67, no. 10, pp. 332–340, 2009. View at Google Scholar · View at Scopus
  39. J. R. Stockigt, “Guidelines for diagnosis and monitoring of thyroid disease: nonthyroidal illness,” Clinical Chemistry, vol. 42, no. 1, pp. 188–192, 1996. View at Google Scholar · View at Scopus
  40. M. Boas, J. L. Forman, A. Juul et al., “Narrow intra-individual variation of maternal thyroid function in pregnancy based on a longitudinal study on 132 women,” European Journal of Endocrinology, vol. 161, no. 6, pp. 903–910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Andersen, K. M. Pedersen, N. H. Bruun, and P. Laurberg, “Narrow individual variations in serum T4 and T3 in normal subjects: a clue to the understanding of subclinical thyroid disease,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1068–1072, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Andersen, N. H. Bruun, K. M. Pedersen, and P. Laurberg, “Biologic variation is important for interpretation of thyroid function tests,” Thyroid, vol. 13, no. 11, pp. 1069–1078, 2003. View at Google Scholar · View at Scopus
  43. T. Ankrah-Tetteh, S. Wijeratne, and R. Swaminathan, “Intraindividual variation in serum thyroid hormones, parathyroid hormone and insulin-like growth factor-1,” Annals of Clinical Biochemistry, vol. 45, no. 2, pp. 167–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. E. K. Harris, “Effects of intra and interindividual variation on the appropriate use of normal ranges,” Clinical Chemistry, vol. 20, no. 12, pp. 1535–1542, 1974. View at Google Scholar · View at Scopus
  45. B. Biondi and D. S. Cooper, “The clinical significance of subclinical thyroid dysfunction,” Endocrine Reviews, vol. 29, no. 1, pp. 76–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Stricker, M. Echenard, R. Eberhart et al., “Evaluation of maternal thyroid function during pregnancy: the importance of using gestational age-specific reference intervals,” European Journal of Endocrinology, vol. 157, no. 4, pp. 509–514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. B. M. Casey and K. J. Leveno, “Thyroid disease in pregnancy,” Obstetrics and Gynecology, vol. 108, no. 5, pp. 1283–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. S. Dashe, B. M. Casey, C. E. Wells et al., “Thyroid-stimulating hormone in singleton and twin pregnancy: importance of gestational age-specific reference ranges,” Obstetrics and Gynecology, vol. 106, no. 4, pp. 753–757, 2005. View at Google Scholar · View at Scopus
  49. R. M. Gilbert, N. C. Hadlow, J. P. Walsh et al., “Assessment of thyroid function during pregnancy: first-trimester (weeks 9–13) reference intervals derived from Western Australian women,” Medical Journal of Australia, vol. 189, no. 5, pp. 250–253, 2008. View at Google Scholar · View at Scopus
  50. D. L. Fitzpatrick and M. A. Russell, “Diagnosis and management of thyroid disease in pregnancy,” Obstetrics and Gynecology Clinics of North America, vol. 37, no. 2, pp. 173–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Lambert-Messerlian, M. McClain, J. E. Haddow et al., “First- and second-trimester thyroid hormone reference data in pregnant women: a FaSTER (first- and second-trimester evaluation of risk for aneuploidy) research consortium study,” The American Journal of Obstetrics and Gynecology, vol. 199, no. 1, pp. 62.e1–62.e6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Abalovich, S. Gutierrez, G. Alcaraz, G. Maccallini, A. Garcia, and O. Levalle, “Overt and subclinical hypothyroidism complicating pregnancy,” Thyroid, vol. 12, no. 1, pp. 63–68, 2002. View at Google Scholar · View at Scopus
  53. R. Z. Klein, J. E. Haddow, J. D. Faix et al., “Prevalence of thyroid deficiency in pregnant women,” Clinical Endocrinology, vol. 35, no. 1, pp. 41–46, 1991. View at Google Scholar · View at Scopus
  54. V. J. Pop, E. P. Brouwers, H. L. Vader, T. Vulsma, A. L. van Baar, and J. J. de Vijlder, “Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study,” Clinical Endocrinology, vol. 59, no. 3, pp. 282–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. N. S. Panesar, C. Y. Li, and M. S. Rogers, “Reference intervals for thyroid hormones in pregnant Chinese women,” Annals of Clinical Biochemistry, vol. 38, no. 4, pp. 329–332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Kriplani, K. Buckshee, V. L. Bhargava, D. Takker, and A. C. Ammini, “Maternal and perinatal outcome in thyrotoxicosis complicating,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 54, no. 3, pp. 159–163, 1994. View at Google Scholar · View at Scopus
  57. L. E. Davis, M. J. Lucas, G. D. V. Hankins, M. L. Roark, and F. G. Cunningham, “Thyrotoxicosis complicating pregnancy,” The American Journal of Obstetrics and Gynecology, vol. 160, no. 1, pp. 63–70, 1989. View at Google Scholar · View at Scopus