Table of Contents Author Guidelines Submit a Manuscript
Journal of Thyroid Research
Volume 2013, Article ID 648395, 5 pages
http://dx.doi.org/10.1155/2013/648395
Review Article

Thyroid Hormones and Peripheral Nerve Regeneration

Department of Pharmacology, University of Athens, 75 Mikras Asias Avenue, Goudi, 11527 Athens, Greece

Received 11 February 2013; Accepted 16 March 2013

Academic Editor: Constantinos Pantos

Copyright © 2013 Ioannis D. Papakostas and George A. Macheras. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Oppenheimer and H. L. Schwartz, “Molecular basis of thyroid hormone-dependent brain development,” Endocrine Reviews, vol. 18, no. 4, pp. 462–475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. E. O. Johnson, A. B. Zoubos, and P. N. Soucacos, “Regeneration and repair of peripheral nerves,” Injury, vol. 36, no. 4, pp. S24–S29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Barakat-Walter, R. Krafsik, M. Schenker, and T. Kuntzer, “Thyroid hormone in biodegradable nerve guides stimulates sciatic nerve regeneration: a potential therapeutic approach for human peripheral nerve injuries,” Journal of Neurotrauma, vol. 24, no. 3, pp. 567–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Lunborg, Nerve Injury and Repair: Regeneration, Reconstruction and Cortical Remodeling, Elsevier Churchill Livingstone, 2nd edition, 2004.
  5. G. Lundborg, B. Rosen, L. Dahlin, N. Danielsen, and J. Holmberg, “Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study,” Journal of Hand Surgery, vol. 22, no. 1, pp. 99–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Lundborg, L. Dahlin, N. Danielsen, and Q. Zhao, “Trophism, tropism, and specificity in nerve regeneration,” Journal of Reconstructive Microsurgery, vol. 10, no. 5, pp. 345–354, 1994. View at Google Scholar · View at Scopus
  7. M. Zhang and I. V. Yannas, “Peripheral nerve regeneration,” Advances in Biochemical Engineering/Biotechnology, vol. 94, pp. 67–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Berenberg, D. S. Forman, and D. K. Wood, “Recovery of peripheral nerve function after axotomy: effect of triiodothyronine,” Experimental Neurology, vol. 57, no. 2, pp. 349–363, 1977. View at Google Scholar · View at Scopus
  9. S. J. Allpress and M. Pollock, “Morphological and functional effects of triiodothyronine on regenerating peripheral nerve,” Experimental Neurology, vol. 91, no. 2, pp. 382–391, 1986. View at Google Scholar · View at Scopus
  10. C. Pantos, V. Malliopoulou, D. D. Varonos, and D. V. Cokkinos, “Thyroid hormone and phenotypes of cardioprotection,” Basic Research in Cardiology, vol. 99, no. 2, pp. 101–120, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Barakat-Walter, “Role of thyroid hormones and their receptors in peripheral nerve regeneration,” Journal of Neurobiology, vol. 40, pp. 541–559, 1999. View at Google Scholar
  12. M. Schenker, R. Kraftsik, L. Glauser, T. Kuntzer, J. Bogousslavsky, and I. Barakat-Walter, “Thyroid hormone reduces the loss of axotomized sensory neurons in dorsal root ganglia after sciatic nerve transection in adult rat,” Experimental Neurology, vol. 184, no. 1, pp. 225–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Courtin, H. Zrouri, A. Lamirand et al., “Thyroid hormone deiodinases in the central and peripheral nervous system,” Thyroid, vol. 15, no. 8, pp. 931–942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. W. W. Li, C. Le Goascogne, M. Schumacher, M. Pierre, and F. Courtin, “Type 2 deiodinase in the peripheral nervous system: induction in the sciatic nerve after injury,” Neuroscience, vol. 107, no. 3, pp. 507–518, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Schenker, B. M. Riederer, T. Kuntzer, and I. Barakat-Walter, “Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration,” Brain Research, vol. 957, no. 2, pp. 259–270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Papakostas, I. Mourouzis, K. Mourouzis, G. Macheras, E. Boviatsis, and C. Pantos, “Functional effects of local thyroid hormone administration after sciatic nerve injury in rats,” Microsurgery, vol. 29, no. 1, pp. 35–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. S. P. Varejão, A. M. Cabrita, M. F. Meek et al., “Motion of the foot and ankle during the stance phase in rats,” Muscle and Nerve, vol. 26, no. 5, pp. 630–635, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. S. P. Varejão, A. M. Cabrita, M. F. Meek et al., “Ankle kinematics to evaluate functional recovery in crushed rat sciatic nerve,” Muscle and Nerve, vol. 27, no. 6, pp. 706–714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. P. Varejão, P. Melo-Pinto, M. F. Meek, V. M. Filipe, and J. Bulas-Cruz, “Methods for the experimental functional assessment of rat sciatic nerve regeneration,” Neurological Research, vol. 26, no. 2, pp. 186–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. F. M. Lin, Y. C. Pan, C. Hom, M. Sabbahi, and S. Shenaq, “Ankle stance angle: a functional index for the evaluation of sciatic nerve recovery after complete transection,” Journal of Reconstructive Microsurgery, vol. 12, no. 3, pp. 173–177, 1996. View at Google Scholar · View at Scopus
  21. S. Hanz and M. Fainzilber, “Retrograde signaling in injured nerve—the axon reaction revisited,” Journal of Neurochemistry, vol. 99, no. 1, pp. 13–19, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Scharpf, M. Strome, and M. Siemionow, “Immunomodulation with anti-αβ T-cell receptor monoclonal antibodies in combination with cyclosporine a improves regeneration in nerve allografts,” Microsurgery, vol. 26, no. 8, pp. 599–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. C. Benn, D. Perrelet, A. C. Kato et al., “Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival,” Neuron, vol. 36, no. 1, pp. 45–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Hirata, J. He, Y. Hirakawa, W. Liu, S. Wang, and M. Kawabuchi, “HSP27 is markedly induced in Schwann cell columns and associated regenerating axons,” Glia, vol. 42, no. 1, pp. 1–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. O. Hebb, T. L. Myers, and D. B. Clarke, “Enhanced expression of heat shock protein 27 is correlated with axonal regeneration in mature retinal ganglion cells,” Brain Research, vol. 1073-1074, no. 1, pp. 146–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Pantos, V. Malliopoulou, I. Mourouzis et al., “Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia,” European Journal of Pharmacology, vol. 478, no. 1, pp. 53–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Voinesco, L. Glauser, R. Kraftsik, and I. Barakat-Walter, “Local administration of thyroid hormones in silicone chamber increases regeneration of rat transected sciatic nerve,” Experimental Neurology, vol. 150, no. 1, pp. 69–81, 1998. View at Publisher · View at Google Scholar · View at Scopus