Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2011, Article ID 352043, 6 pages
http://dx.doi.org/10.1155/2011/352043
Review Article

Striated Muscle as Implantation Site for Transplanted Pancreatic Islets

1Department of Medical Cell Biology, Husargatan 3, P.O. Box 571, Uppsala University, 75123 Uppsala, Sweden
2Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, 75123 Uppsala, Sweden
3Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden

Received 27 May 2011; Accepted 20 September 2011

Academic Editor: Antonello Pileggi

Copyright © 2011 Daniel Espes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Kemp, M. J. Knight, and D. W. Scharp, “Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats,” Diabetologia, vol. 9, no. 6, pp. 486–491, 1973. View at Google Scholar · View at Scopus
  2. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. A. Ryan, B. W. Paty, P. A. Senior et al., “Five-year follow-up after clinical islet transplantation,” Diabetes, vol. 54, no. 7, pp. 2060–2069, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Bennet, B. Sundberg, C. G. Groth et al., “Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation?” Diabetes, vol. 48, no. 10, pp. 1907–1914, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Moberg, H. Johansson, A. Lukinius et al., “Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation,” The Lancet, vol. 360, no. 9350, pp. 2039–2045, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Moberg, “The role of the innate immunity in islet transplantation,” Upsala Journal of Medical Sciences, vol. 110, no. 1, pp. 17–55, 2005. View at Google Scholar · View at Scopus
  7. O. Eriksson, T. Eich, A. Sundin et al., “Positron emission tomography in clinical islet transplantation,” The American Journal of Transplantation, vol. 9, no. 12, pp. 2816–2824, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. P. O. Carlsson, F. Palm, A. Andersson, and P. Liss, “Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site,” Diabetes, vol. 50, no. 3, pp. 489–495, 2001. View at Google Scholar · View at Scopus
  9. R. Olsson, “The microvasculature of endogenous and transplanted pancreatic islets,” in Medical Cell Biology, pp. 1–83, Uppsala University, Uppsala, Sweden, 2006. View at Google Scholar
  10. R. Olsson, “Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation,” Diabetes, vol. 60, no. 9, pp. 2350–2353, 2011. View at Google Scholar
  11. N. M. Desai, J. A. Goss, S. Deng et al., “Elevated portal vein drug levels of sirolimus and tacrolimus in islet transplant recipients: local immunosuppression or islet toxicity,” Transplantation, vol. 76, no. 11, pp. 1623–1625, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. M. Shapiro, H. L. Gallant, G. H. Er et al., “The portal immunosuppressive storm: relevance to islet transplantation?” Therapeutic Drug Monitoring, vol. 27, no. 1, pp. 35–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Lee, M. Ravazzola, B. H. Park, Y. K. Bashmakov, L. Orci, and R. H. Unger, “Metabolic mechanisms of failure of intraportally transplanted pancreatic β-cells in rats: role of lipotoxicity and prevention by leptin,” Diabetes, vol. 56, no. 9, pp. 2295–2301, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. B. Leitao, K. Bernetti, T. Tharavanij et al., “Lipotoxicity and decreased islet graft survival,” Diabetes Care, vol. 33, no. 3, pp. 658–660, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. Mattsson, L. Jansson, and P. O. Carlsson, “Decreased vascular density in mouse pancreatic islets after transplantation,” Diabetes, vol. 51, no. 5, pp. 1362–1366, 2002. View at Google Scholar · View at Scopus
  16. J. Lau and P. O. Carlsson, “Low revascularization of human islets when experimentally transplanted into the liver,” Transplantation, vol. 87, no. 3, pp. 322–325, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. Lau Börjesson, P.-O Bergren, M. Köhler, and P.-O Carlsson, “Pancreatic islets transplanted intraportally into the liver in mice have a substantially lower blood flow than native islets,” Diabetologia, vol. 53, supplement 1, p. S60, 2010. View at Google Scholar
  18. N. R. Simpson, F. Souza, P. Witkowski et al., “Visualizing pancreatic β-cell mass with [11C]DTBZ,” Nuclear Medicine and Biology, vol. 33, no. 7, pp. 855–864, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. K. P. Koopmans, O. C. Neels, I .P. Kema et al., “Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography,” Journal of Clinical Oncology, vol. 26, no. 9, pp. 1489–1495, 2008. View at Google Scholar
  20. H. Minn, S. Kauhanen, M. Seppänen, and P. Nuutila, “18F-FDOPA: a multiple-target molecule,” Journal of Nuclear Medicine, vol. 50, no. 12, pp. 1915–1918, 2009. View at Google Scholar
  21. B. Wangler, S. Schneider, O. Thews et al., “Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3- methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic β-cell mass with positron emission tomography (PET),” Nuclear Medicine and Biology, vol. 31, no. 5, pp. 639–647, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Brom, W. J. G. Oyen, L. Joosten, M. Gotthardt, and O. C. Boerman, “68Ga-labelled exendin-3, a new agent for the detection of Insulinomas with PET,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 7, pp. 1345–1355, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. T. Kalliokoski, P. Nuutila, K. A. Virtanen et al., “Pancreatic glucose uptake in vivo in men with newly diagnosed type 1 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 5, pp. 1909–1914, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Lau, C. Kampf, G. Mattsson et al., “Beneficial role of pancreatic microenvironment for angiogenesis in transplanted pancreatic islets,” Cell Transplantation, vol. 18, no. 1, pp. 23–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Lau, G. Mattsson, C. Carlsson et al., “Implantation site-dependent dysfunction of transplanted pancreatic islets,” Diabetes, vol. 56, no. 6, pp. 1544–1550, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. D. Jacobs-Tulleneers-Thevissen, K. Bartholomeus, K. Suenens et al., “Human islet cell implants in a nude rat model of diabetes survive better in omentum than in liver with a positive influence of beta cell number and purity,” Diabetologia, vol. 53, no. 8, pp. 1690–1699, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. J. Simeonovic, D. P. Dhall, J. D. Wilson, and K. J. Lafferty, “A comparative study of transplant sites for endocrine tissue transplantation in the pig,” The Australian Journal of Experimental Biology and Medical Science, vol. 64, part 1, pp. 34–41, 1986. View at Google Scholar · View at Scopus
  28. D. M. Berman, J. J. O'Neil, L. C. Coffey et al., “Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold,” The American Journal of Transplantation, vol. 9, no. 1, pp. 91–104, 2009. View at Google Scholar
  29. S. Speier, D. Nyqvist, O. Cabrera et al., “Noninvasive in vivo imaging of pancreatic islet cell biology,” Nature Medicine, vol. 14, no. 5, pp. 574–578, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. V. L. Perez, A. Caicedo, D. M. Berman et al., “The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes,” Diabetologia, vol. 54, no. 5, pp. 1121–1126, 2011. View at Google Scholar
  31. Y. Tominaga, K. Uchida, T. Haba et al., “More than 1,000 cases of total parathyroidectomy with forearm autograft for renal hyperparathyroidism,” The American Journal of Kidney Diseases, vol. 38, no. 4, supplement 1, pp. S168–S171, 2001. View at Google Scholar
  32. G. Christoffersson, J. Henriksnäs, L. Johansson et al., “Clinical and experimental pancreatic islet transplantation to striated muscle: establishment of a vascular system similar to that in native islets,” Diabetes, vol. 59, no. 10, pp. 2569–2578, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Svensson, J. Lau, M. Sandberg, and P.-O. Carlsson, “High vascular density and oxygenation of pancreatic islets transplanted in clusters into striated muscle,” Cell Transplantation, vol. 20, no. 5, pp. 783–788, 2011. View at Publisher · View at Google Scholar · View at PubMed
  34. E. Rafael, A. Tibell, M. Rydén et al., “Intramuscular autotransplantation of pancreatic islets in a 7-year-old child: a 2-year follow-up,” The American Journal of Transplantation, vol. 8, no. 2, pp. 458–462, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. K. V. Axen and F. X. Pi-Sunyer, “Long-term reversal of streptozotocin-induced diabetes in rats by intramuscular islet implantation,” Transplantation, vol. 31, no. 6, pp. 439–441, 1981. View at Google Scholar · View at Scopus
  36. T. Lund, O. Korsgren, I. A. Aursnes, H. Scholz, and A. Foss, “Sustained reversal of diabetes following islet transplantation to striated musculature in the rat,” Journal of Surgical Research, vol. 160, no. 1, pp. 145–154, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. C. J. Weber, M. A. Hardy, and F. X. Pi Sunyer, “Tissue culture preservation and intramuscular transplantation of pancreatic islets,” Surgery, vol. 84, no. 1, pp. 166–174, 1978. View at Google Scholar · View at Scopus
  38. B. M. Prior, H. T. Yang, and R. L. Terjung, “What makes vessels grow with exercise training?” Journal of Applied Physiology, vol. 97, no. 3, pp. 1119–1128, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. Ito, S. Itakura, I. Todorov et al., “Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function,” Transplantation, vol. 89, no. 12, pp. 1438–1445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. I. R. Duprez, U. Johansson, B. Nilsson, O. Korsgren, and P. U. Magnussoncorresponding author, “Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation,” Upsala Journal of Medical Sciences, vol. 116, no. 1, pp. 8–17, 2011. View at Publisher · View at Google Scholar · View at PubMed
  41. C. L. Rackham, P. C. Chagastelles, N. B. Nardi, A. C. Hauge-Evans, P. M. Jones, and A. J. King, “Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice,” Diabetologia, vol. 54, no. 5, pp. 1127–1135, 2011. View at Google Scholar
  42. A. Omer, V. F. Duvivier-Kali, W. Aschenbach, V. Tchipashvill, L. J. Goodyear, and G. C. Weir, “Exercise induces hypoglycemia in rats with islet transplantation,” Diabetes, vol. 53, no. 2, pp. 360–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. I. Stagner, S. P. Mokshagundam, and E. Samols, “Induction of mild hypoglycemia by islet transplantation to the pancreas,” Transplantation Proceedings, vol. 30, no. 2, pp. 635–636, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. P. O. Carlsson, A. Nordin, and F. Palm, “pH is decreased in transplanted rat pancreatic islets,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 284, no. 3, pp. E499–E504, 2003. View at Google Scholar
  45. C. Toso, H. Zaidi, P. Morel et al., “Positron-emission tomography imaging of early events after transplantation of islets of langerhans,” Transplantation, vol. 79, no. 3, pp. 353–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Eich, O. Eriksson, A. Sundin et al., “Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model,” Transplantation, vol. 84, no. 7, pp. 893–898, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. Witkowski, H. Sondermeijer, M. A. Hardy et al., “Islet grafting and imaging in a bioengineered intramuscular space,” Transplantation, vol. 88, no. 9, pp. 1065–1074, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. F. Pattou, J. Kerr-Conte, and D. Wild, “GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle,” The New England Journal of Medicine, vol. 363, no. 13, pp. 1289–1290, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus