Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2012, Article ID 736491, 11 pages
http://dx.doi.org/10.1155/2012/736491
Review Article

Stem Cells as a Tool to Improve Outcomes of Islet Transplantation

1Section of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2Section of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
3Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
4The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received 17 May 2012; Accepted 2 July 2012

Academic Editor: Thierry Berney

Copyright © 2012 Emily Sims and Carmella Evans-Molina. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Ryan, B. W. Paty, P. A. Senior et al., “Five-year follow-up after clinical islet transplantation,” Diabetes, vol. 54, no. 7, pp. 2060–2069, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Alejandro, F. B. Barton, B. J. Hering, and S. Wease, “2008 Update from the collaborative islet transplant registry,” Transplantation, vol. 86, no. 12, pp. 1783–1788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Korsgren, B. Nilsson, C. Berne et al., “Current status of clinical islet transplantation,” Transplantation, vol. 79, no. 10, pp. 1289–1293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Davalli, L. Scaglia, D. H. Zangen, J. Hollister, S. Bonner-Weir, and G. C. Weir, “Vulnerability of islets in the immediate posttransplantation period: dynamic changes in structure and function,” Diabetes, vol. 45, no. 9, pp. 1161–1167, 1996. View at Google Scholar · View at Scopus
  6. S. A. Nanji and A. M. J. Shapiro, “Advances in pancreatic islet transplantation in humans,” Diabetes, Obesity and Metabolism, vol. 8, no. 1, pp. 15–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Abdelli, J. Ansite, R. Roduit et al., “Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure,” Diabetes, vol. 53, no. 11, pp. 2815–2823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Bottino, A. N. Balamurugan, H. Tse et al., “Response of human islets to isolation stress and the effect of antioxidant treatment,” Diabetes, vol. 53, no. 10, pp. 2559–2568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. T. Titus, P. J. Horton, L. Badet et al., “Adverse outcome of human islet-allogeneic blood interaction,” Transplantation, vol. 75, no. 8, pp. 1317–1322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Moberg, H. Johansson, A. Lukinius et al., “Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation,” The Lancet, vol. 360, no. 9350, pp. 2039–2045, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. van der Windt, R. Bottino, A. Casu, N. Campanile, and D. K. C. Cooper, “Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies,” Xenotransplantation, vol. 14, no. 4, pp. 288–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Cardani, A. Pileggi, C. Ricordi et al., “Allosensitization of islet allograft recipients,” Transplantation, vol. 84, no. 11, pp. 1413–1427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. L. Chhabra and P. Brayman, “Current status of immunomodulatory and cellular therapies in preclinical and clinical islet transplantation,” Journal of Transplantation, vol. 2011, Article ID 637692, 2011. View at Google Scholar
  14. D. L. Roelen, V. A. L. Huurman, R. Hilbrands et al., “Relevance of cytotoxic alloreactivity under different immunosuppressive regimens in clinical islet cell transplantation,” Clinical and Experimental Immunology, vol. 156, no. 1, pp. 141–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. B. O. Roep, I. Stobbe, G. Duinkerken et al., “Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients,” Diabetes, vol. 48, no. 3, pp. 484–490, 1999. View at Google Scholar · View at Scopus
  16. M. D. Bellin, D. E. R. Sutherland, G. J. Beilman et al., “Similar islet function in islet allotransplant and autotransplant recipients, despite lower islet mass in autotransplants,” Transplantation, vol. 91, no. 3, pp. 367–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. Stegall, K. J. Lafferty, I. Sam, and R. G. Gill, “Evidence of recurrent autoimmunity in human allogeneic islet transplantation,” Transplantation, vol. 61, no. 8, pp. 1272–1274, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Makhlouf, K. Kishimoto, R. N. Smith et al., “The role of autoimmunity in islet allograft destruction: major histocompatibility complex class II matching is necessary for autoimmune destruction of allogeneic islet transplants after T-cell costimulatory blockade,” Diabetes, vol. 51, no. 11, pp. 3202–3210, 2002. View at Google Scholar · View at Scopus
  19. C. Jaeger, M. D. Brendel, B. J. Hering, M. Eckhard, and R. G. Bretzel, “Progressive islet graft failure occurs significantly earlier in autoantibody-positive than in autoantibody-negative IDDM recipients of intrahepatic islet allografts,” Diabetes, vol. 46, no. 11, pp. 1907–1910, 1997. View at Google Scholar · View at Scopus
  20. V. A. L. Huurman, R. Hilbrands, G. G. M. Pinkse et al., “Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation,” PLoS ONE, vol. 3, no. 6, Article ID e2435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Hilbrands, V. A. L. Huurman, P. Gillard et al., “Differences in baseline lymphocyte counts and autoreactivity are associated with differences in outcome of islet cell transplantation in type 1 diabetic patients,” Diabetes, vol. 58, no. 10, pp. 2267–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. D. Menger, J. I. Yamauchi, and B. Vollmar, “Revascularization and microcirculation of freely grafted islets of langerhans,” World Journal of Surgery, vol. 25, no. 4, pp. 509–515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Henderson and M. C. Moss, “A morphometric study of the endocrine and exocrine capillaries of the pancreas,” Quarterly Journal of Experimental Physiology, vol. 70, no. 3, pp. 347–356, 1985. View at Google Scholar · View at Scopus
  24. B. Hirshberg, S. Mog, N. Patterson, J. Leconte, and D. M. Harlan, “Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using Edmonton protocol immunosuppression,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5424–5429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P.-O. Carlsson, “Influence of microenvironment on engraftment of transplanted beta-cells,” Upsala Journal of Medical Sciences, vol. 116, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. J. Shapiro, H. L. Gallant, G. H. Er et al., “The portal immunosuppressive storm: relevance to islet transplantation?” Therapeutic Drug Monitoring, vol. 27, no. 1, pp. 35–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Olsson, J. Olerud, U. Pettersson, and P. O. Carlsson, “Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation,” Diabetes, vol. 60, no. 9, pp. 2350–2353, 2011. View at Google Scholar
  28. H. Zhou, T. Zhang, M. Bogdani et al., “Intrahepatic glucose flux as a mechanism for defective intrahepatic islet α-cell response to hypoglycemia,” Diabetes, vol. 57, no. 6, pp. 1567–1574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Lau, G. Mattsson, C. Carlsson et al., “Implantation site-dependent dysfunction of transplanted pancreatic islets,” Diabetes, vol. 56, no. 6, pp. 1544–1550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Bhargava, P. A. Senior, T. E. Ackerman et al., “Prevalence of hepatic steatosis after islet transplantation and its relation to graft function,” Diabetes, vol. 53, no. 5, pp. 1311–1317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Ding, D. Xu, G. Feng, A. Bushell, R. J. Muschel, and K. J. Wood, “Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9,” Diabetes, vol. 58, no. 8, pp. 1797–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Berman, M. A. Willman, D. Han et al., “Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates,” Diabetes, vol. 59, no. 10, pp. 2558–2568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Longoni, E. Szilagyi, P. Quaranta et al., “Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation,” Diabetes Technology & Therapeutics, vol. 12, no. 6, pp. 435–446, 2010. View at Google Scholar · View at Scopus
  34. E. J. Jung, S. C. Kim, Y. M. Wee et al., “Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulin secretory function in vitro,” Cytotherapy, vol. 13, no. 1, pp. 19–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. K. A. Keyser, K. E. Beagles, and H. P. Kiem, “Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation,” Cell Transplantation, vol. 16, no. 5, pp. 555–562, 2007. View at Google Scholar · View at Scopus
  37. S. Ghannam, C. Bouffi, F. Djouad, C. Jorgensen, and D. Noël, “Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications,” Stem Cell Research and Therapy, vol. 1, no. 1, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. H. Kim, Y. M. Wee, M. Y. Choi, D. G. Lim, S. C. Kim, and D. J. Han, “Interleukin (IL)-10 induced by CD11b+ cells and IL-10-activated regulatory T cells play a role in immune modulation of mesenchymal stem cells in rat islet allografts,” Molecular Medicine, vol. 17, no. 7-8, pp. 697–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Sakata, N. K. Chan, J. Chrisler, A. Obenaus, and E. Hathout, “Bone marrow cell cotransplantation with islets improves their vascularization and function,” Transplantation, vol. 89, no. 6, pp. 686–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Ito, S. Itakura, I. Todorov et al., “Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function,” Transplantation, vol. 89, no. 12, pp. 1438–1445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Figliuzzi, R. Cornolti, N. Perico et al., “Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats,” Transplantation Proceedings, vol. 41, no. 5, pp. 1797–1800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. S. Park, Y. S. Kim, J. H. Kim et al., “Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5'-triphosphate)/ADP (adenosine-5'-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor,” Transplantation Proceedings, vol. 41, no. 9, pp. 3813–3818, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Sordi, R. Melzi, A. Mercalli et al., “Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function,” Stem Cells, vol. 28, no. 1, pp. 140–151, 2010. View at Google Scholar
  44. A. Golocheikine, V. Tiriveedhi, N. Angaswamy, N. Benshoff, R. Sabarinathan, and T. Mohanakumar, “Cooperative signaling for angiogenesis and neovascularization by VEGF and HGF following islet transplantation,” Transplantation, vol. 90, no. 7, pp. 725–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Johansson, I. Rasmusson, S. P. Niclou et al., “Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization,” Diabetes, vol. 57, no. 9, pp. 2393–2401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Lu, X. Jin, Y. Chen et al., “Mesenchymal stem cells protect islets from hypoxia/reoxygenation-induced injury,” Cell Biochemistry and Function, vol. 28, no. 8, pp. 637–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. S. Park, Y. S. Kim, J. H. Kim et al., “Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation,” Transplantation, vol. 89, no. 5, pp. 509–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Karaoz, Z. S. Genç, P. Ç. Demircan, A. Aksoy, and G. Duruksu, “Protection of rat pancreatic islet function and viability by coculture with rat bone marrow-derived mesenchymal stem cells,” Cell Death and Disease, vol. 1, no. 4, article e36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. C. L. Rackham, P. C. Chagastelles, N. B. Nardi, A. C. Hauge-Evans, P. M. Jones, and A. J. F. King, “Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice,” Diabetologia, vol. 54, no. 5, pp. 1127–1135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. H. S. Wang, J. F. Shyu, W. S. Shen et al., “Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice,” Cell Transplantation, vol. 20, no. 3, pp. 455–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. X. H. Wu, C. P. Liu, K. F. Xu et al., “Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3342–3349, 2007. View at Google Scholar · View at Scopus
  52. S. H. Oh, T. M. Muzzonigro, S. H. Bae, J. M. LaPlante, H. M. Hatch, and B. E. Petersen, “Adult bone marrow-derived cells trans differentiating into insulin-producing cells for the treatment of type I diabetes,” Laboratory Investigation, vol. 84, no. 5, pp. 607–617, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Kim, B. S. Yoon, J. H. Moon, J. Kim, E. K. Jun, J. H. Lee et al., “Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells,” Experimental and Molecular Medicine, vol. 44, no. 1, pp. 26–35, 2012. View at Google Scholar
  54. S. Kadam, S. Muthyala, P. Nair, and R. Bhonde, “Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes,” The Review of Diabetic Studies, vol. 7, no. 2, pp. 168–182, 2010. View at Google Scholar · View at Scopus
  55. D. O. Traktuev, S. Merfeld-Clauss, J. Li et al., “A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks,” Circulation Research, vol. 102, no. 1, pp. 77–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Rehman, D. Traktuev, J. Li et al., “Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells,” Circulation, vol. 109, no. 10, pp. 1292–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Ohmura, M. Tanemura, N. Kawaguchi et al., “Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice,” Transplantation, vol. 90, no. 12, pp. 1366–1373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Timper, D. Seboek, M. Eberhardt et al., “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1135–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Lee, D. J. Han, and S. C. Kim, “In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract,” Biochemical and Biophysical Research Communications, vol. 375, no. 4, pp. 547–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Chandra, S. G, S. Muthyala et al., “Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice,” PLoS ONE, vol. 6, no. 6, Article ID e20615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. D. O. Traktuev, D. N. Prater, S. Merfeld-Clauss et al., “Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells,” Circulation Research, vol. 104, no. 12, pp. 1410–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. E. N. Kozlova and L. Jansson, “Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets,” NeuroReport, vol. 20, no. 9, pp. 833–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Olerud, N. Kanaykina, S. Vasilovska et al., “Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets,” Diabetologia, vol. 52, no. 12, pp. 2594–2601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Furth and A. Atala, “Stem cell sources to treat diabetes,” Journal of Cellular Biochemistry, vol. 106, no. 4, pp. 507–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Evans-Molina, G. L. Vestermark, and R. G. Mirmira, “Development of insulin-producing cells from primitive biologic precursors,” Current Opinion in Organ Transplantation, vol. 14, no. 1, pp. 56–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. C. N. Mayhew and J. M. Wells, “Converting human pluripotent stem cells into β-cells: recent advances and future challenges,” Current Opinion in Organ Transplantation, vol. 15, no. 1, pp. 54–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Assady, G. Maor, M. Amit, J. Itskovitz-Eldor, K. L. Skorecki, and M. Tzukerman, “Insulin production by human embryonic stem cells,” Diabetes, vol. 50, no. 8, pp. 1691–1697, 2001. View at Google Scholar · View at Scopus
  68. N. Lumelsky, O. Blondel, P. Laeng, I. Velasco, R. Ravin, and R. McKay, “Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets,” Science, vol. 292, no. 5520, pp. 1389–1394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Kroon, L. A. Martinson, K. Kadoya et al., “Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo,” Nature Biotechnology, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Sui, J. K. Mfopou, B. Chen, K. Sermon, and L. Bouwens, “Transplantation of human embryonic stem cell-derived pancreatic endoderm reveals a site-specific survival, growth and differentiation,” Cell transplantation. In press.
  71. X. Xu, V. L. Browning, and J. S. Odorico, “Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells,” Mechanisms of Development, vol. 128, no. 7–10, pp. 412–427, 2011. View at Google Scholar
  72. S. P. Raikwar and N. Zavazava, “Spontaneous in vivo differentiation of embryonic stem cell-derived pancreatic endoderm-like cells corrects hyperglycemia in diabetic mice,” Transplantation, vol. 91, no. 1, pp. 11–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Zhang, W. Jiang, M. Liu et al., “Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells,” Cell Research, vol. 19, no. 4, pp. 429–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Tateishi, J. He, O. Taranova, G. Liang, A. C. D'Alessio, and Y. Zhang, “Generation of insulin-secreting islet-like clusters from human skin fibroblasts,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31601–31607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. Alipio, W. Liao, E. J. Roemer et al., “Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13426–13431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. I. R. Duprez, U. Johansson, B. Nilsson, O. Korsgren, and P. U. Magnusson, “Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation,” Upsala Journal of Medical Sciences, vol. 116, no. 1, pp. 8–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. X. Xu, L. Chen, R. Wang et al., “Mesenchymal stem cell therapy for diabetes through paracrine mechanisms,” Medical Hypotheses, vol. 71, no. 3, pp. 390–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Z. Q. Luo, F. Xiong, A. S. Al-Homsi, T. Roy, and L. G. Luo, “Human BM stem cells initiate angiogenesis in human islets in vitro,” Bone Marrow Transplantation, vol. 46, no. 8, pp. 1128–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Lechner, Y. G. Yang, R. A. Blacken, L. Wang, A. L. Nolan, and J. F. Habener, “No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo,” Diabetes, vol. 53, no. 3, pp. 616–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. J. Carvell, P. J. Marsh, S. J. Persaud, and P. M. Jones, “E-cadherin interactions regulate β-cell proliferation in islet-like structures,” Cellular Physiology and Biochemistry, vol. 20, no. 5, pp. 617–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. A. C. Hauge-Evans, A. J. King, D. Carmignac et al., “Somatostatin secreted by islet δ-cells fulfills multiple roles as a paracrine regulator of islet function,” Diabetes, vol. 58, no. 2, pp. 403–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Kelly, N. H. McClenaghan, and P. R. Flatt, “Role of islet structure and cellular interactions in the control of insulin secretion,” Islets, vol. 3, no. 2, pp. 41–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Mizuno, “Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review,” Journal of Nippon Medical School, vol. 76, no. 2, pp. 56–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Tang, D. Zeve, J. M. Suh et al., “White fat progenitor cells reside in the adipose vasculature,” Science, vol. 322, no. 5901, pp. 583–586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Mizuno, M. Tobita, and A. C. Uysal, “Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine,” Stem Cells, vol. 30, no. 5, pp. 804–810, 2012. View at Google Scholar
  88. N. Nakao, T. Nakayama, T. Yahata et al., “Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells,” American Journal of Pathology, vol. 177, no. 2, pp. 547–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Cavallari, E. Olivi, F. Bianchi, F. Neri, L. Foroni, S. Valente et al., “Mesenchymal stem cells and islet co-transplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules,” Cell Transplantation. In press.
  90. H. M. Mi, Y. K. Sun, J. K. Yeon et al., “Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia,” Cellular Physiology and Biochemistry, vol. 17, no. 5-6, pp. 279–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. K. K. Hirschi, D. A. Ingram, and M. C. Yoder, “Assessing identity, phenotype, and fate of endothelial progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 9, pp. 1584–1595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Botta, E. Gao, G. Stassi et al., “Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells,” The FASEB Journal, vol. 18, no. 12, pp. 1392–1394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Kawamoto, H. C. Gwon, H. Iwaguro et al., “Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia,” Circulation, vol. 103, no. 5, pp. 634–637, 2001. View at Google Scholar · View at Scopus
  94. A. Schuh, E. A. Liehn, A. Sasse et al., “Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model,” Basic Research in Cardiology, vol. 103, no. 1, pp. 69–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. R. Finney, N. J. Greco, S. E. Haynesworth et al., “Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia,” Biology of Blood and Marrow Transplantation, vol. 12, no. 5, pp. 585–593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Masuda and T. Asahara, “Post-natal endothelial progenitor cells for neovascularization in tissue regeneration,” Cardiovascular Research, vol. 58, no. 2, pp. 390–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. M. S. Kiran, R. I. Viji, V. B. Sameer Kumar, and P. R. Sudhakaran, “Modulation of angiogenic factors by ursolic acid,” Biochemical and Biophysical Research Communications, vol. 371, no. 3, pp. 556–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Nekrep, J. Wang, T. Miyatsuka, and M. S. German, “Signals from the neural crest regulate beta-cell mass in the pancreas,” Development, vol. 135, no. 12, pp. 2151–2160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Ahrén, “Autonomic regulation of islet hormone secretion—implications for health and disease,” Diabetologia, vol. 43, no. 4, pp. 393–410, 2000. View at Google Scholar · View at Scopus
  100. K. H. Bramswig and N. C. Kaestner, “Epigenetics and diabetes treatment: an unrealized promise?” Trends in Endocrinology and Metabolism, vol. 23, no. 6, pp. 286–291, 2012. View at Google Scholar
  101. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Kim, C. H. Kim, J. I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Bichsel, D. K. Neeld, T. Hamazaki et al., “Bacterial delivery of nuclear proteins into pluripotent and differentiated cells,” PLoS ONE, vol. 6, no. 1, Article ID e16465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Borowiak, R. Maehr, S. Chen et al., “Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells,” Cell Stem Cell, vol. 4, no. 4, pp. 348–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Chen, M. Borowiak, J. L. Fox et al., “A small molecule that directs differentiation of human ESCs into the pancreatic lineage,” Nature Chemical Biology, vol. 5, no. 4, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Lin, R. Ambasudhan, X. Yuan et al., “A chemical platform for improved induction of human iPSCs,” Nature Methods, vol. 6, no. 11, pp. 805–808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. T. C. Schulz, H. Y. Young, A. D. Agulnick, M. J. Babin, E. E. Baetge, A. G. Bang et al., “A scalable system for production of functional pancreatic progenitors from human embryonic stem cells,” PLoS One, vol. 7, no. 5, Article ID e37004, 2012. View at Google Scholar
  109. T. Fujikawa, S. H. Oh, L. Pi, H. M. Hatch, T. Shupe, and B. E. Petersen, “Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells,” American Journal of Pathology, vol. 166, no. 6, pp. 1781–1791, 2005. View at Google Scholar · View at Scopus
  110. Y. Dor, J. Brown, O. I. Martinez, and D. A. Melton, “Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation,” Nature, vol. 429, no. 6987, pp. 41–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Zhao, Z. Jiang, T. Zhao, M. Ye, C. Hu, Z. Yin et al., “Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells,” BMC Medicine, vol. 10, article 3, 2012. View at Google Scholar
  112. G. Moll, I. Rasmusson-Duprez, L. von Bahr, A. M. Connolly-Andersen, G. Elgue, L. Funke et al., “Are therapeutic human mesenchymal stromal cells compatible with human blood?” Stem Cells, vol. 30, no. 7, pp. 1565–1574, 2012. View at Google Scholar