Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2013, Article ID 163150, 11 pages
http://dx.doi.org/10.1155/2013/163150
Research Article

International Heart Valve Bank Survey: A Review of Processing Practices and Activity Outcomes

1National Cardiovascular Homograft Bank, Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore 168752
2Sydney Heart Valve Bank, St. Vincent’s Hospital, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
3Cell and Tissue Therapies WA, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia

Received 19 June 2013; Revised 13 August 2013; Accepted 13 August 2013

Academic Editor: F. H. J. Claas

Copyright © 2013 Wee Ling Heng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Staab, R. A. Nishimura, J. A. Dearani, and T. A. Orszulak, “Aortic valve homografis in adults: a clinical perspective,” Mayo Clinic Proceedings, vol. 73, no. 3, pp. 231–238, 1998. View at Google Scholar · View at Scopus
  2. K. G. M. Brockbank and D. J. B. Siler, “Aseptic and antiseptic treatment of donated and living engineered organs and tissues,” in Disinfection, Sterilization, and Preservation, S. B. Seymour, Ed., pp. 1011–1022, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2001. View at Google Scholar
  3. W. L. Heng, C. H. Lim, B. H. Tan et al., “From penicillin-streptomycin to amikacin-vancomycin: antibiotic decontamination of cardiovascular homografts in singapore,” PLoS One, vol. 7, no. 12, Article ID e51605, 2012. View at Publisher · View at Google Scholar
  4. D. Fehily, S. A. Brubaker, J. N. Kearney, and L. Wolfinbarger Jr., “The role of professional standards in the context of regulations,” in Tissue and Cell Processing: An Essential Guide, D. Fehily, Ed., Wiley-Blackwell, 2012. View at Google Scholar
  5. S. Verghese, P. Padmaja, B. Sindhu, S. J. Elizabeth, N. Lesley, and K. M. Cherian, “Homograft valve bank: our experience in valve banking,” Indian Heart Journal, vol. 56, no. 4, pp. 299–306, 2004. View at Google Scholar · View at Scopus
  6. R. Parker, “An international survey of allograft banks,” in Cardiac Valve Allograft. Science and Practice, M. H. Yacoub, Ed., pp. 5–9, Springer, New York, NY, USA, 1997. View at Google Scholar
  7. K. Gall, S. Smith, C. Willmette, M. Wong, and M. O'Brien, “Allograft heart valve sterilization: a six-year in-depth analysis of a twenty-five-year experience with low-dose antibiotics,” Journal of Thoracic and Cardiovascular Surgery, vol. 110, no. 3, pp. 680–687, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Germain, L. Thibault, A. Jacques, J. Tremblay, and R. Bourgeois, “Heart valve allograft decontamination with antibiotics: impact of the temperature of incubation on efficacy,” Cell and Tissue Banking, vol. 11, no. 2, pp. 197–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-D. Fan, B. Van Hoeck, V. Holovska, and R. Jashari, “Evaluation of decontamination process of heart valve and artery tissues in European Homograft Bank (EHB): a retrospective study of 1,055 cases,” Cell and Tissue Banking, vol. 13, no. 2, pp. 297–304, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Parker, “Banking of heart valves,” in Essentials of Tissue Banking, G. Galea, Ed., pp. 69–80, Springer, New York, NY, USA, 1st edition, 2010. View at Google Scholar
  11. M. F. O'Brien, D. C. McGiffin, E. G. Stafford et al., “Allograft aortic valve replacement: long-term comparative clinical analysis of the viable cryopreserved and antibiotic 4°C stored valves,” Journal of Cardiac Surgery, vol. 6, no. 4, supplement, pp. 534–543, 1991. View at Google Scholar · View at Scopus
  12. R. Villalba, P. Alonso, J. Manuel Villalba, L. F. Rioja, and J. Luis Gómez Villagrán, “The effect of amphotericin B on the viability of cryopreserved human skin,” Cryobiology, vol. 32, no. 4, pp. 314–317, 1995. View at Google Scholar · View at Scopus
  13. B. Wegner, P. Baer, S. Gauer, G. Oremek, I. A. Hauser, and H. Geiger, “Caspofungin is less nephrotoxic than amphotericin B in vitro and predominantly damages distal renal tubular cells,” Nephrology Dialysis Transplantation, vol. 20, no. 10, pp. 2071–2079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Gall, S. E. Smith, C. A. Willmette, and M. F. O'Brien, “Allograft heart valve viability and valve-processing variables,” Annals of Thoracic Surgery, vol. 65, no. 4, pp. 1032–1038, 1998. View at Google Scholar · View at Scopus
  15. L. C. Armiger, “Viability studies of human valves prepared for use as allografts,” Annals of Thoracic Surgery, vol. 60, no. 2, supplement, pp. S118–S121, 1995. View at Google Scholar · View at Scopus
  16. F. Hoekstra, M. Witvliet, C. Knoop et al., “Donor-specific anti-human leukocyte antigen class I antibodies after implantation of cardiac valve allografts,” Journal of Heart and Lung Transplantation, vol. 16, no. 5, pp. 570–572, 1997. View at Google Scholar · View at Scopus
  17. L. C. Armiger, “Postimplantation leaflet cellularity of valve allografts: are donor cells beneficial or detrimental?” Annals of Thoracic Surgery, vol. 66, no. 6, supplement, pp. S233–S235, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Mirabet, C. Carda, P. Solves et al., “Long-term storage in liquid nitrogen does not affect cell viability in cardiac valve allografts,” Cryobiology, vol. 57, no. 2, pp. 113–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. N. Ross, “Homograft replacement of the aortic valve,” The Lancet, vol. 280, no. 7254, p. 487, 1962. View at Google Scholar · View at Scopus
  20. K. G. M. Brockbank, J. F. Carpenter, and P. E. Dawson, “Effects of storage temperature on viable bioprosthetic heart valves,” Cryobiology, vol. 29, no. 5, pp. 537–542, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. J. S. Tweddell, A. N. Pelech, P. C. Frommelt et al., “Factors affecting longer of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease,” Circulation, vol. 102, no. 19, supplement 3, pp. III130–III135, 2000. View at Google Scholar · View at Scopus
  22. E. Troost, B. Meyns, W. Daenen et al., “Homograft survival after tetralogy of Fallot repair: determinants of accelerated homograft degeneration,” European Heart Journal, vol. 28, no. 20, pp. 2503–2509, 2007. View at Publisher · View at Google Scholar · View at Scopus