Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2014 (2014), Article ID 139361, 7 pages
http://dx.doi.org/10.1155/2014/139361
Review Article

Significance of Urinary Proteome Pattern in Renal Allograft Recipients

1DUKE-NUS Graduate Medical School, Singapore 169857
2Department of Renal Medicine, Singapore General Hospital, 20 College Road, Singapore 169856

Received 22 November 2013; Accepted 13 February 2014; Published 13 March 2014

Academic Editor: Wojciech Rowiński

Copyright © 2014 Sufi M. Suhail. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. K. Shamseddin and G. A. Knoll, “Posttransplantation proteinuria: an approach to diagnosis and management,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 7, pp. 1786–1793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Suhail, T. S. Y. Kee, K. T. Woo et al., “Impact of patterns of proteinuria on renal allograft function and survival: a prospective cohort study,” Clinical Transplantation, vol. 25, no. 3, pp. E297–E303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. C. Racusen, K. Solez, R. B. Colvin et al., “The Banff 97 working classification of renal allograft pathology,” Kidney International, vol. 55, no. 2, pp. 713–723, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Julian, H. Suzuki, Y. Suzuki, Y. Tomino, G. Spasovski, and J. Novak, “Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease,” Proteomics, vol. 3, no. 9, pp. 1029–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Nickerson and P. S. Heeger, “Proteomic portrayal of transplant pathologies,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 236–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Wittkea, M. Haubitzb, M. Waldena et al., “Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients,” The American Journal of Transplantation, vol. 5, pp. 2479–2488, 2005. View at Google Scholar
  7. L. F. Quintana, A. Solé-Gonzalez, S. G. Kalko et al., “Urine proteomics to detect biomarkers for chronic allograft dysfunction,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 428–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Schaub, D. Rush, J. Wilkins et al., “Proteomic-based detection of urine proteins associated with acute renal allograft rejection,” Journal of the American Society of Nephrology, vol. 15, no. 1, pp. 219–227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. http://www.ebi.ac.uk/ebisearch/search.ebi?db=medline&t=urine+proteome.
  10. http://www.protonet.cs.huji.ac.il.
  11. M. Myslak, H. Amer, P. Morales et al., “Interpreting post-transplant proteinuria in patients with proteinuria pre-transplant,” The American Journal of Transplantation, vol. 6, no. 7, pp. 1660–1665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Fernández-Fresnedo, J. J. Plaza, J. Sánchez-Plumed, A. Sanz-Guajardo, R. Palomar-Fontanet, and M. Arias, “Proteinuria: a new marker of long-term graft and patient survival in kidney transplantation,” Nephrology Dialysis Transplantation, vol. 19, no. 3, pp. iii47–iii51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. Pires, A. Santinho da Cunha, G. Virella, and J. Simoes, “Analytical characterization of urinary proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis in renal disease: clinical and histopathological correlations,” Nephron, vol. 14, no. 5, pp. 361–372, 1975. View at Google Scholar · View at Scopus
  14. C. Donadio, R. Puccini, A. Lucchesi, R. Giordani, and G. Rizzo, “Urinary excretion of proteins and tubular enzymes in renal transplant patients,” Renal Failure, vol. 20, no. 5, pp. 707–715, 1998. View at Google Scholar · View at Scopus
  15. J. Fotheringham, C. A. Angel, and W. McKane, “Transplant glomerulopathy: morphology, associations and mechanism,” Nephron, vol. 113, no. 1, pp. c1–c7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Hribova, J. Lacha, K. Kotsch et al., “Intrarenal cytokine and chemokine gene expression and kidney graft outcome,” Kidney and Blood Pressure Research, vol. 30, no. 5, pp. 273–282, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Mischak, C. Delles, J. Klein, and J. P. Schanstra, “Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application,” Advances in Chronic Kidney Disease, vol. 17, no. 6, pp. 493–506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Dihazi and G. A. Müller, “Urinary proteomics: a tool to discover biomarkers of kidney diseases,” Expert Review of Proteomics, vol. 4, no. 1, pp. 39–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. H. Tesch, “Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective,” Nephrology, vol. 15, no. 6, pp. 609–616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yamamoto, R. G. Langham, P. Ronco, M. A. Knepper, and V. Thongboonkerd, “Towards standard protocols and guidelines for urine proteomics: a report on the Human Kidney and Urine Proteome Project (HKUPP),” Proteomics, vol. 8, no. 11, pp. 2156–2159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. Timms and R. Cramer, “Difference gel electrophoresis,” Proteomics, vol. 8, no. 23-24, pp. 4886–4897, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. P. L. Ross, Y. N. Huang, J. N. Marchese et al., “Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents,” Molecular and Cellular Proteomics, vol. 3, no. 12, pp. 1154–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Meleady, “2D gel electrophoresis and mass spectrometry identification and analysis of proteins,” Methods in Molecular Biology, vol. 784, pp. 123–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Spahr, M. Davis, M. D. McGinley et al., “Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry I: profiling an unfractionated tryptic digest,” Proteomics, vol. 1, no. 1, pp. 93–107, 2001. View at Google Scholar · View at Scopus
  25. S. K. Akkina, Y. Zhang, G. L. Nelsestuen, W. S. Oetting, and H. N. Ibrahim, “Temporal stability of the urinary proteome after kidney transplant: more sensitive than protein composition?” Journal of Proteome Research, vol. 8, no. 1, pp. 94–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. F. Quintana, E. Bañon-Maneus, A. Solé-Gonzalez, and J. M. Campistol, “Urine proteomics biomarkers in renal transplantation: an overview,” Transplantation, vol. 88, no. 3, pp. S45–S49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Dai, T. Lv, K. Wang, Y. Huang, D. Li, and J. Liu, “Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation,” Saudi Journal of Kidney Diseases and Transplantation, vol. 19, no. 6, pp. 952–959, 2008. View at Google Scholar · View at Scopus
  28. E. O'Riordan, T. N. Orlova, M. J. Jianfeng et al., “Bioinformatic analysis of the urine proteome of acute allograft rejection,” Journal of the American Society of Nephrology, vol. 15, no. 12, pp. 3240–3248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Prasad, “Novel biomarkers for the early prediction of acute kidney injury,” Cancer Therapy, vol. 3, pp. 477–488, 2005. View at Google Scholar
  30. K. Bramham, H. D. Mistry, L. Poston, L. C. Chappell, and A. J. Thompson, “The non-invasive biopsy: will urinary proteomics make the renal tissue biopsy redundant?” QJM, vol. 102, no. 8, pp. 523–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Lamoureux, L. N. Gastinel, E. Mestre, P. Marquet, and M. Essig, “Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC),” Journal of Proteomics, vol. 27, pp. 3674–3687, 2012. View at Google Scholar
  32. S. O'Connell, C. Slattery, M. P. Ryan, and T. McMorrow, “Identification of novel indicators of cyclosporine A nephrotoxicity in a CD-1 mouse model,” Toxicology and Applied Pharmacology, vol. 252, no. 2, pp. 201–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Nakorchevsky, J. A. Hewel, S. M. Kurian et al., “Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies,” Journal of the American Society of Nephrology, vol. 21, no. 2, pp. 362–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. H. Özdemir, A. A. Özdemir, T. Colak, S. Sezer, and M. Haberal, “The influence of tubular phenotypic changes on the development of diffuse interstitial fibrosis in renal allografts,” Transplantation Proceedings, vol. 43, no. 2, pp. 527–529, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. A. Julian, S. Wittke, M. Haubitz et al., “Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases,” World Journal of Urology, vol. 25, no. 5, pp. 467–476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Decramer, A. G. de Peredo, B. Breuil et al., “Urine in clinical proteomics,” Molecular and Cellular Proteomics, vol. 7, no. 10, pp. 1850–1862, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Fliser, J. Novak, V. Thongboonkerd et al., “Advances in urinary proteome analysis and biomarker discovery,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1057–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus