Table of Contents Author Guidelines Submit a Manuscript
Journal of Transplantation
Volume 2015, Article ID 354826, 10 pages
http://dx.doi.org/10.1155/2015/354826
Review Article

MicroRNAs in Kidney Transplantation: Living up to Their Expectations?

Department of Surgery, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, Netherlands

Received 18 December 2014; Revised 3 March 2015; Accepted 18 March 2015

Academic Editor: Kazuhiko Yamada

Copyright © 2015 Eline K. van den Akker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Friedewald and H. Rabb, “Inflammatory cells in ischemic acute renal failure,” Kidney International, vol. 66, no. 2, pp. 486–491, 2004. View at Publisher · View at Google Scholar
  2. N. Perico, D. Cattaneo, M. H. Sayegh, and G. Remuzzi, “Delayed graft function in kidney transplantation,” The Lancet, vol. 364, no. 9447, pp. 1814–1827, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Liang, D. Ridzon, L. Wong, and C. Chen, “Characterization of microRNA expression profiles in normal human tissues,” BMC Genomics, vol. 8, article 166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sun, S. Koo, N. White et al., “Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs,” Nucleic Acids Research, vol. 32, no. 22, article e188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Tian, A. S. Greene, J. L. Pietrusz, I. R. Matus, and M. Liang, “MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis,” Genome Research, vol. 18, no. 3, pp. 404–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Sui, Y. Dai, Y. Huang, H. Lan, Q. Yan, and H. Huang, “Microarray analysis of MicroRNA expression in acute rejection after renal transplantation,” Transplant Immunology, vol. 19, no. 1, pp. 81–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Anglicheau, V. K. Sharma, R. Ding et al., “MicroRNA expression profiles predictive of human renal allograft status,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5330–5335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Lorenzen, I. Volkmann, J. Fiedler et al., “Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients,” American Journal of Transplantation, vol. 11, no. 10, pp. 2221–2227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Z. Ben-Dov, T. Muthukumar, P. Morozov, F. B. Mueller, T. Tuschl, and M. Suthanthiran, “MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis,” Transplantation, vol. 94, no. 11, pp. 1086–1094, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Scian, D. G. Maluf, K. G. David et al., “MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA,” American Journal of Transplantation, vol. 11, no. 10, pp. 2110–2122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wilflingseder, H. Regele, P. Perco et al., “MiRNA profiling discriminates types of rejection and injury in human renal allografts,” Transplantation, vol. 95, no. 6, pp. 835–841, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Danger, A. Pallier, M. Giral et al., “Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant,” Journal of the American Society of Nephrology, vol. 23, no. 4, pp. 597–606, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Wei, K. Bhatt, H.-Z. He, Q.-S. Mi, V. H. Haase, and Z. Dong, “Targeted deletion of dicer from proximal tubules protects against renal ischemia-reperfusion injury,” Journal of the American Society of Nephrology, vol. 21, no. 5, pp. 756–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. G. Godwin, X. Ge, K. Stephan, A. Jurisch, S. G. Tullius, and J. Iacomini, “Identification of a microRNA signature of renal ischemia reperfusion injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 14339–14344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Saikumar, D. Hoffmann, T.-M. Kim et al., “Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury,” Toxicological Sciences, vol. 129, no. 2, pp. 256–267, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Xu, A. J. Kriegel, Y. Liu et al., “Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21,” Kidney International, vol. 82, no. 11, pp. 1167–1175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Cantaluppi, S. Gatti, D. Medica et al., “Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells,” Kidney International, vol. 82, no. 4, pp. 412–427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Alvarez-Saavedra, G. Antoun, A. Yanagiya et al., “miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock,” Human Molecular Genetics, vol. 20, no. 4, Article ID ddq519, pp. 731–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Guo, Y. Liu, Y. Bai, Y. Sun, F. Xiao, and Y. Guo, “Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis,” European Journal of Cancer, vol. 46, no. 9, pp. 1692–1702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kaucsár, C. Révész, M. Godó et al., “Activation of the miR-17 family and miR-21 during murine kidney ischemia-reperfusion injury,” Nucleic Acid Therapeutics, vol. 23, no. 5, pp. 344–354, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Hausenloy and D. M. Yellon, “Preconditioning and postconditioning: underlying mechanisms and clinical application,” Atherosclerosis, vol. 204, no. 2, pp. 334–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. V. Narayanan, K. R. Dave, and M. A. Perez-Pinzon, “Ischemic preconditioning and clinical scenarios,” Current Opinion in Neurology, vol. 26, no. 1, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Selzner, M. Boehnert, and M. Selzner, “Preconditioning, postconditioning, and remote conditioning in solid organ transplantation: basic mechanisms and translational applications,” Transplantation Reviews, vol. 26, no. 2, pp. 115–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Jia, J. Teng, J. Zou et al., “MiR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice,” Anesthesiology, vol. 119, no. 3, pp. 621–630, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-T. Lee, K. Chu, K.-H. Jung et al., “MicroRNAs induced during ischemic preconditioning,” Stroke, vol. 41, no. 8, pp. 1646–1651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A.-B. Stittrich, C. Haftmann, E. Sgouroudis et al., “The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes,” Nature Immunology, vol. 11, no. 11, pp. 1057–1062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Merkerova, M. Belickova, and H. Bruchova, “Differential expression of microRNAs in hematopoietic cell lineages,” European Journal of Haematology, vol. 81, no. 4, pp. 304–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Danger, C. Paul, M. Giral et al., “Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection,” PLoS ONE, vol. 8, no. 4, Article ID e60702, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Cheng, M. W. Byrom, J. Shelton, and L. P. Ford, “Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis,” Nucleic Acids Research, vol. 33, no. 4, pp. 1290–1297, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. D. G. Maluf, C. I. Dumur, J. L. Suh et al., “The urine microRNA profile may help monitor post-transplant renal graft function,” Kidney International, vol. 85, no. 2, pp. 439–449, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Zhou, S. Haupt, I. Prots et al., “miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant,” Journal of Immunology, vol. 190, no. 12, pp. 6579–6588, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. T. N. MacKenzie, N. Mujumdar, S. Banerjee et al., “Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation,” Molecular Cancer Therapeutics, vol. 12, no. 7, pp. 1266–1275, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. J. B. Johnnidis, M. H. Harris, R. T. Wheeler et al., “Regulation of progenitor cell proliferation and granulocyte function by microRNA-223,” Nature, vol. 451, no. 7182, pp. 1125–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Agrawal, U. Tran, and O. Wessely, “The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1,” Development, vol. 136, no. 23, pp. 3927–3936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Li, S. Donath, Y. Li, D. Qin, B. S. Prabhakar, and P. Li, “miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway,” PLoS Genetics, vol. 6, no. 1, Article ID e1000795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Thum, C. Gross, J. Fiedler et al., “MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts,” Nature, vol. 456, no. 7224, pp. 980–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. L. B. Frankel, N. R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, and A. H. Lund, “Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells,” The Journal of Biological Chemistry, vol. 283, no. 2, pp. 1026–1033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Aguado-Fraile, E. Ramos, D. Sáenz-Morales et al., “miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target,” PLoS ONE, vol. 7, no. 9, Article ID e44305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Muratsu-Ikeda, M. Nangaku, Y. Ikeda, T. Tanaka, T. Wada, and R. Inagi, “Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells,” PLoS ONE, vol. 7, no. 7, Article ID e41462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Zell, R. Schmitt, S. Witting, H. H. Kreipe, K. Hussein, and J. U. Becker, “Hypoxia induces mesenchymal gene expression in renal tubular epithelial cells: an in vitro model of kidney transplant fibrosis,” Nephron Extra, vol. 3, no. 1, pp. 50–58, 2013. View at Publisher · View at Google Scholar
  46. M. Kato, L. Arce, M. Wang, S. Putta, L. Lanting, and R. Natarajan, “A microRNA circuit mediates transforming growth factor-Β1 autoregulation in renal glomerular mesangial cells,” Kidney International, vol. 80, no. 4, pp. 358–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Elmén, M. Lindow, A. Silahtaroglu et al., “Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver,” Nucleic Acids Research, vol. 36, no. 4, pp. 1153–1162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Elmén, M. Lindow, S. Schütz et al., “LNA-mediated microRNA silencing in non-human primates,” Nature, vol. 452, no. 7189, pp. 896–899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. T. M. El-Achkar, “Modulation of apoptosis by ischemic preconditioning: an emerging role for miR-21,” Kidney International, vol. 82, no. 11, pp. 1149–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus