Table of Contents
Journal of Wind Energy
Volume 2013, Article ID 903057, 21 pages
http://dx.doi.org/10.1155/2013/903057
Research Article

Influences of Wind Energy Integration into the Distribution Network

1School of Engineering, Faculty of Science, Engineering & Built Environment, Geelong Waurn Ponds Campus, Deakin University, VIC 3220, Australia
2School of Engineering and Technology, Central Queensland University, Australia

Received 24 March 2013; Revised 16 August 2013; Accepted 20 August 2013

Academic Editor: Ujjwal K. Saha

Copyright © 2013 G. M. Shafiullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV) and low voltage (LV) distribution network (DN). From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network; however, the level of adverse impacts is higher in the LV DN compared to the HV DN.