Table of Contents
Journal of Waste Management
Volume 2013, Article ID 479126, 8 pages
http://dx.doi.org/10.1155/2013/479126
Research Article

Phytotoxicity Evolution of Biowastes Undergoing Aerobic Decomposition

1Cernas—Natural Resources, Environment and Society Research Centre, Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Bencanta, 3040-316 Coimbra, Portugal
2Department of Chemical Engineering, CIEPQPF-Research Centre on Chemical Processes Engineering and Forest Products, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-290 Coimbra, Portugal

Received 31 January 2013; Revised 27 March 2013; Accepted 8 April 2013

Academic Editor: Yu Liu

Copyright © 2013 M. R. Soares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. T. Haug, The Practical Handbook of Compost Engineering, CRC-Press, Boca Raton, Fla, USA, 1993.
  2. S. Gajalakshmi and S. A. Abbasi, “Solid waste management by composting: state of the art,” Critical Reviews in Environmental Science and Technology, vol. 38, no. 5, pp. 311–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Trautmann and M. Krasny, Composting in the Classroom, Cornell University Press, 1997.
  4. M. of A. & Food, Resource Management Branch, Ministry of Agriculture, Food and Fisheries, Abbotsford, Canada, 1996.
  5. M. Tosin, F. Degli-Innocenti, and C. Bastioli, “Effect of the composting substrate on biodegradation of solid materials under controlled composting conditions,” Journal of Enviornmental Polymer Degradation, vol. 4, no. 1, pp. 55–63, 1996. View at Publisher · View at Google Scholar
  6. A. de Guardia, C. Petiot, and D. Rogeau, “Influence of aeration rate and biodegradability fractionation on composting kinetics,” Waste Management, vol. 28, no. 1, pp. 73–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. de Guardia, P. Mallard, C. Teglia et al., “Comparison of five organic wastes regarding their behaviour during composting—part 2: nitrogen dynamic,” Waste Management, vol. 30, no. 3, pp. 415–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ponsá, T. Gea, and A. Sánchez, “Different indices to express biodegradability in organic solid wastes,” Journal of Environmental Quality, vol. 39, no. 2, pp. 706–712, 2010. View at Publisher · View at Google Scholar
  9. R. Barrena, T. Gea, S. Ponsá et al., “Categorizing raw organic material biodegradability via respiration activity measurement: a review,” Compost Science & Utilization, vol. 19, no. 2, pp. 105–113, 2011. View at Google Scholar
  10. L. Berthe, C. Druilhe, C. Massiani, A. Tremier, and A. de Guardia, “Coupling a respirometer and a pycnometer, to study the biodegradability of solid organic wastes during composting,” Biosystems Engineering, vol. 97, no. 1, pp. 75–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. López, O. Huerta-Pujol, F. X. Martínez, and M. Soliva, “Approaching compost stability from Klason lignin modified method: chemical stability degree for OM and N quality assessment,” Resources, Conservation and Recycling, vol. 55, no. 2, pp. 171–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Barrena, J. Turet, A. Busquets, M. Farrés, X. Font, and A. Sánchez, “Respirometric screening of several types of manure and mixtures intended for composting,” Bioresource Technology, vol. 102, no. 2, pp. 1367–1377, 2011. View at Publisher · View at Google Scholar
  13. M. Tuomela, M. Vikman, A. Hatakka, and M. Itävaara, “Biodegradation of lignin in a compost environment: a review,” Bioresource Technology, vol. 72, no. 2, pp. 169–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. D. P. Komilis and R. K. Ham, “The effect of lignin and sugars to the aerobic decomposition of solid wastes,” Waste Management, vol. 23, no. 5, pp. 419–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Tiquia, “Reduction of compost phytotoxicity during the process of decomposition,” Chemosphere, vol. 79, no. 5, pp. 506–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Gao, F. Liang, A. Yu, B. Li, and L. Yang, “Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios,” Chemosphere, vol. 78, no. 5, pp. 614–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Cabañas-Vargas, M. Sánchez-Monedero, S. Urpilainen, A. Kamilaki, and E. Stentiford, “Assessing the stability and maturity of compost at large-scale plants,” Ingeniería, vol. 9, pp. 25–30, 2005. View at Google Scholar
  18. P. Helfrich, B. Chefetz, Y. Hadar, Y. Chen, and H. Schnabl, “A novel method for determining phytotoxicity in composts,” Compost Science and Utilization, vol. 6, no. 3, pp. 6–13, 1998. View at Google Scholar · View at Scopus
  19. T. Nolan, S. M. Troy, M. G. Healy, W. Kwapinski, J. J. Leahy, and P. G. Lawlor, “Characterization of compost produced from separated pig manure and a variety of bulking agents at low initial C/N ratios,” Bioresource Technology, vol. 102, no. 14, pp. 7131–7138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. H. Yu, M. J. Wu, Y. H. Luo, X. M. Yang, W. Ran, and Q. R. Shen, “Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity,” Waste Management, vol. 31, no. 8, pp. 1729–1736, 2011. View at Publisher · View at Google Scholar
  21. D. P. Komilis and I. S. Tziouvaras, “A statistical analysis to assess the maturity and stability of six composts,” Waste Management, vol. 29, no. 5, pp. 1504–1513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Gea, R. Barrena, A. Artola, and A. Sánchez, “Monitoring the biological activity of the composting process: oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ),” Biotechnology and Bioengineering, vol. 88, no. 4, pp. 520–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Tiquia, N. F. Y. Tam, and I. J. Hodgkiss, “Effects of composting on phytotoxicity of spent pig-manure sawdust litter,” Environmental Pollution, vol. 93, no. 3, pp. 249–256, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Zhu, “Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system,” Bioresource Technology, vol. 97, no. 15, pp. 1870–1875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. J. An, G. H. Huang, Y. Yao, W. Sun, and K. An, “Performance of in-vessel composting of food waste in the presence of coal ash and uric acid,” Journal of Hazardous Materials, vol. 203-204, pp. 38–45, 2012. View at Publisher · View at Google Scholar
  26. B. Scaglia, F. Tambone, P. L. Genevini, and F. Adani, “Respiration index determination: dynamic and static approaches,” Compost Science and Utilization, vol. 8, no. 2, pp. 90–98, 2000. View at Google Scholar · View at Scopus
  27. M. Delgado, “Phytotoxicity of uncomposted and composted poultry manure,” African Journal of Plant Science, vol. 4, pp. 154–162, 2010. View at Google Scholar
  28. M. Gómez-Brandón, C. Lazcano, and J. Domínguez, “The evaluation of stability and maturity during the composting of cattle manure,” Chemosphere, vol. 70, no. 3, pp. 436–444, 2008. View at Google Scholar
  29. M. Gao, B. Li, A. Yu, F. Liang, L. Yang, and Y. Sun, “The effect of aeration rate on forced-aeration composting of chicken manure and sawdust,” Bioresource Technology, vol. 101, no. 6, pp. 1899–1903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Xiao, G. M. Zeng, Z. H. Yang et al., “Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste,” Bioresource Technology, vol. 100, no. 20, pp. 4807–4813, 2009. View at Publisher · View at Google Scholar · View at Scopus