Table of Contents
Journal of Waste Management
Volume 2013, Article ID 686981, 9 pages
http://dx.doi.org/10.1155/2013/686981
Research Article

Reuse Feasibility of Electrocoagulated Metal Hydroxide Sludge of Textile Industry in the Manufacturing of Building Blocks

1School of Environmental Systems Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
2Department of Environmental Science, Z. H. Sikder University of Science & Technology, Modhupur, Bhedergonj, Shariatpur, Dhaka 8024, Bangladesh
3Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
4Institute of Glass and Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
5Department of Geological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
6Instrumentation and Calibration Service Laboratory, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
7Pilot Plant and Process Development Center, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
8Department of Environmental Science and Engineering, School of Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9

Received 23 November 2012; Revised 4 January 2013; Accepted 12 January 2013

Academic Editor: Weihua Song

Copyright © 2013 Tanveer Mehedi Adyel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Adyel, S. H. Rahman, S. M. N. Islam, H. M. Sayem, M. Khan, and M. M. Zaman, “Geo-engineering potentiality of electrocoagulated metal hydroxide sludge (EMHS) from textile industry and EMHS amended soil for using as building material,” International Journal of Current Research, vol. 4, no. 2, pp. 21–25, 2012. View at Google Scholar
  2. T. M. Adyel, S. H. Rahman, S. M. N. Islam, H. M. Sayem, M. Khan, and M. A. Gafur, “Characterization of brick making soil: geo-engineering, elemental and thermal aspects,” Jahangirnagar University Journal of Science, vol. 35, no. 1, pp. 109–118, 2012. View at Google Scholar
  3. T. M. Adyel, S. H. Rahman, M. Khan, and S. M. N. Islam, “Analysis of heavy metal in electrocoagulated metal hydroxide sludge (EMHS) from textile industry by energy dispersive X-ray fluorescence (EDXRF),” Metals, vol. 2, no. 4, pp. 478–487, 2012. View at Publisher · View at Google Scholar
  4. A. K. Golder, A. N. Samanta, and S. Ray, “Anionic reactive dye removal from aqueous solution using a new adsorbent-sludge generated in removal of heavy metal by electrocoagulation,” Chemical Engineering Journal, vol. 122, no. 1-2, pp. 107–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. H. Rahman, S. M. N. Islam, N. Kaiser, and M. M. Rahman, “Electrocoagulation (EC) for reduction of chemical oxygen demand (COD) of surface water,” Bangladesh Journal of Scientific and Industrial Research, vol. 47, no. 1, pp. 77–82, 2012. View at Google Scholar
  6. S. M. N. Islam, S. H. Rahman, T. M. Adyel et al., “Electrocoagulation (EC) technique for color removal from orange II dye,” Bangladesh Journal of Environmental Research, vol. 9, pp. 45–52, 2011. View at Google Scholar
  7. S. M. N. Islam, S. H. Rahman, M. M. Rahman et al., “Excessive turbidity removal from textile effluents using electrocoagulation (EC) technique,” Journal of Scientific Research, vol. 3, no. 3, pp. 557–568, 2011. View at Google Scholar
  8. M. Y. A. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, “Electrocoagulation (EC)—science and applications,” Journal of Hazardous Materials, vol. 84, no. 1, pp. 29–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, “Fundamentals, present and future perspectives of electrocoagulation,” Journal of Hazardous Materials, vol. 114, no. 1–3, pp. 199–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Amirtharajah and K. M. Mills, “Rapid-mix design for mechanisms of alum coagulation,” Journal / American Water Works Association, vol. 74, no. 4, pp. 210–216, 1982. View at Google Scholar · View at Scopus
  11. S. H. Rahman, D. Khanam, T. M. Adyel, M. S. Islam, M. A. Ahsan, and M. A. Akbor, “Assessment of heavy metal contamination of agricultural soil around Dhaka export processing zone (DEPZ), Bangladesh: implication of seasonal variation and indices,” Applied Sciences, vol. 2, no. 3, pp. 584–601, 2012. View at Publisher · View at Google Scholar
  12. M. A. Rouf and M. D. Hossain, “Effects of using arsenic-iron sludge in brick making,” 2001, http://www.unu.edu/env/arsenic/Dhaka2003/15-Rouf.pdf.
  13. C. H. Weng, D. F. Lin, and P. C. Chiang, “Utilization of sludge as brick materials,” Advances in Environmental Research, vol. 7, no. 3, pp. 679–685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. F. Lin and C. H. Weng, “Use of sewage sludge ash as brick material,” Journal of Environmental Engineering, vol. 127, no. 10, pp. 922–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. Tay and K. Y. Show, “Constructive sludge disposal option converting sludge into innovative civil engineering materials,” in Proceeding of 7th International Association on Water Quality (IAWQ), Asia-Pacific Regional Conference, pp. 1023–1028, Taipei, Taiwan, 1999.
  16. M. Ismail, M. A. Ismail, S. K. Lau, B. Muhammad, and Z. Majid, “Fabrication of bricks from paper sludge and palm oil fuel ash,” Concreate Research Letter, vol. 1, no. 2, pp. 13–18, 2010. View at Google Scholar
  17. N. T. Ha, T. Yem, and V. T. Mai, “Study on reuse of heavy metal rich sludge in ceramic pigment and construction material production,” VNU Journal of Science, Natural Sciences and Technology, vol. 24, pp. 280–286, 2008. View at Google Scholar
  18. L. Chen and D. F. Lin, “Applications of sewage sludge ash and nano-SiO2 to manufacture tile as construction material,” Construction and Building Materials, vol. 23, no. 11, pp. 3312–3320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. G. Liew, A. Idris, A. A. Samad, C. H. K. Wong, M. S. Jaafar, and A. M. Baki, “Reusability of sewage sludge in clay bricks,” Journal of Material Cycles and Waste Management, vol. 6, no. 1, pp. 41–47, 2004. View at Publisher · View at Google Scholar
  20. J. Balasubramanian, P. C. Sabumon, J. U. Lazar, and R. Ilangovan, “Reuse of textile effluent treatment plant sludge in building materials,” Waste Management, vol. 26, no. 1, pp. 22–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Baskar, K. M. M. S. Begum, and S. Sundaram, “Characterization and reuse of textile effluent treatment plant waste sludge in clay bricks,” Journal of the University Chemical Technology and Metallurgy, vol. 41, no. 4, pp. 473–478, 2006. View at Google Scholar
  22. E. J. Trauner, “Sludge ash bricks fired to above and below ash-vitrifying temperature,” Journal of Environmental Engineering, vol. 119, no. 3, pp. 506–519, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. J. H. Tay and K. Y. Show, “Manufacture of cement from sewage sludge,” Journal of Materials in Civil Engineering, vol. 5, no. 1, pp. 19–29, 1993. View at Google Scholar · View at Scopus
  24. J. E. Alleman, E. H. Bryan, T. A. Stumm, W. W. Marlow, and R. C. Hocevar, “Sludge-amended brick production: applicability for metal-laden residues,” Water Science and Technology, vol. 22, no. 12, pp. 309–317, 1990. View at Google Scholar · View at Scopus
  25. J. H. Tay, “Bricks manufactured from sludge,” Journal Environmental Engineering, vol. 113, no. 2, pp. 278–283, 1987. View at Publisher · View at Google Scholar
  26. British Standard 1377, Methods for Test for Civil Engineering Purposes, British Standard Institute, London, UK, 1990.
  27. K. H. Head, Manual of Soil Laboratory Testing, Pentech Press, London, UK, 2nd edition, 1992.
  28. R. F. Craig, Soil Mechanics, Chapman and Hall, London, UK, 4th edition, 1990.
  29. J. K. Mitchell, Fundamentals of Soil Behaviour, John Willey & Sons, New York, NY, USA, 1976.
  30. S. K. Awashthi, Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999, Ashoka Law House, New Delhi, India, 2000.
  31. SEPAC (State Environmental Protection Administration of China), Chinese Environmental Quality Standard for Soils (GB15618-1995), Standards Press of China, Beijing, China, 1995.
  32. M. M. Islam, M. A. Halim, S. Safiullah, S. A. M. W. Hoque, and M. S. Islam, “Heavy metal (Pb, Cd, Zn, Cu, Cr, Fe and Mn) content in textile sludge in Gazipur, Bangladesh,” Research Journal of Environmental Sciences, vol. 3, no. 3, pp. 311–315, 2009. View at Publisher · View at Google Scholar
  33. M. J. Uddin, M. S. Miran, and M. Y. A. Mollah, “Electrochemical synthesis and characterization of iron oxyhydroxide,” Journal of Bangladesh Chemical Society, vol. 20, pp. 39–45, 2007. View at Google Scholar
  34. S. Roy, G. R. Adhikari, and R. N. Gupta, “Use of gold mill tailings in making bricks: a feasibility study,” Waste Management and Research, vol. 25, no. 5, pp. 475–482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. ASTM (American Society of Testing Materials), ASTM C67 Standard Test Method for Sampling and Test Brick and Structural Clay Tile, Annual Book of ASTM Standards, Section 4, Construction, 04. 08, 04. 09, Soil and rock (I) and (II), ASTM, West Conshohocken, Pa, USA, 1998.
  36. H. M. A. Mahzuz, R. Alam, M. N. Alam, R. Basak, and M. S. Islam, “Use of arsenic contaminated sludge in making ornamental bricks,” International Journal of Environmental Science and Technology, vol. 6, no. 2, pp. 291–298, 2009. View at Google Scholar · View at Scopus
  37. C. Hall, “Water sorptivity of mortars and concretes: a review,” Magazine of Concrete Research, vol. 41, no. 147, pp. 51–61, 1989. View at Google Scholar · View at Scopus
  38. D. Zhang, W. Liu, H. Hou, and X. He, “Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash,” Waste Management and Research, vol. 25, no. 5, pp. 402–407, 2007. View at Publisher · View at Google Scholar · View at Scopus