Journal of Zoological Systematics and Evolutionary Research
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate29%
Submission to final decision73 days
Acceptance to publication24 days
CiteScore3.400
Journal Citation Indicator0.930
Impact Factor2.424

Submit your research today

Journal of Zoological Systematics and Evolutionary Research is now open for submissions

Read our author guidelines

 Journal profile

Journal of Zoological Systematics and Evolutionary Research is a peer-reviewed, international forum for publication of high-quality research on systematic zoology and evolutionary biology.

 Editor spotlight

Journal of Zoological Systematics and Evolutionary Research maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Abstracting and Indexing

This journal's articles appear in a wide range of abstracting and indexing databases, and are covered by numerous other services that aid discovery and access. Find out more about where and how the content of this journal is available.

Latest Articles

More articles
Review Article

Immunoecology of Species with Alternative Reproductive Tactics and Strategies

Alternative reproductive tactics and strategies (ARTS) refer to polymorphic reproductive behaviours in which in addition to the usual two sexes, there are one or more alternative morphs, usually male, that have evolved the ability to circumvent direct intra-sexual competition. Each morph has its own morphological, ecological, developmental, behavioural, life-history, and physiological profile that shifts the balance between reproduction and self-maintenance, one aspect being immunity. Immunoecological work on species with ARTS, which is the topic of this review, is particularly interesting because the alternative morphs make it possible to separate the effects of sex per se from other factors that in other species are inextricably linked with sex. We first summarize the evolution, development, and maintenance of ARTS. We then review immunoecological hypotheses relevant to species with ARTS, dividing them into physiological, life-history, and ecological hypotheses. In context of these hypotheses, we critically review in detail all immunoecological studies we could find on species with ARTS. Several interesting patterns emerge. Oddly, there is a paucity of studies on insects, despite the many benefits that arise from working with insects: larger sample sizes, simple immune systems, and countless forms of alternative reproductive strategies and tactics. Of all the hypotheses considered, the immunocompetence handicap hypothesis has generated the greatest amount of work, but not necessarily the greatest level of understanding. Unfortunately, it is often used as a general guiding principle rather than a source of explicitly articulated predictions. Other hypotheses are usually considered a posteriori, but perhaps they should take centre stage. Whereas blanket concepts such as “immunocompetence” and “androgens” might be useful to develop a rationale, predictions need to be far more explicitly articulated. Integration so far has been a one-way street, with ecologists delving deeper into physiology, sometimes at the cost of ignoring their organisms’ evolutionary history and ecology. One possible useful framework is to divide ecological and evolutionary factors affecting immunity into those that stimulate the immune system, and those that depress it. Finally, the contributions of genomics to ecology are being increasingly recognized and sometimes applied to species with ARTS, but we must ensure that evolutionary and ecological hypotheses drive the effort, as there is no grandeur in the strict reductionist view of life.

Research Article

Phylogeography and Wolbachia Infections Reveal Postglacial Recolonization Routes of the Parthenogenetic Plant Louse Cacopsylla myrtilli (W. Wagner 1947), (Hemiptera, Psylloidea)

To reveal the phylogeographic pattern of the parthenogenetic psyllid Cacopsylla myrtilli (W. Wagner 1947) (Hemiptera, Psylloidea), we sequenced a 638 bp fragment of the mitochondrial COI gene from 962 individuals. These insects originated from 46 sampling sites, which cover a significant part of the northern Palearctic distribution range of the species. The sequence data revealed 40 haplotypes, with three main (H1, H2, and H3) and 37 derived ones. The main haplotypes H1 or H2 or both were present at all sampling sites. The star-like shape of the haplotype networks indicated recent population expansion. In most cases, the derived haplotypes were specific for each country, suggesting that the main haplotypes H1 and H2 are of refugial origin, and the derived haplotypes have emerged after the postglacial recolonization process. Based on the haplotype sequences, we suggest H3 to represent the ancestral haplotype from which H1 and H2 have evolved. We suggest that the main haplotype H3 together with its derived haplotypes represents bisexual C. myrtilli, which shows a limited distribution on both sides of the border between Finland and Russia in northern Fennoscandia. The genetic diversity was the highest in Sjoa in southern Norway and also high in the White Sea region in northwest Russia. Higher diversity in Sjoa was attributed to both earlier recolonizations compared to that of the White Sea region and the absence of Wolbachia infection. We suggest that these sites were colonized from different Pleistocene refugia, i.e., from western and eastern refugia, respectively. From the White Sea region, recolonization continued eastwards to Ural Mountains and westwards to Finland and further north to Kola Peninsula. From northern Finland, recolonization continued to Finnmark, Norway, and further to Sweden and finally reached a secondary contact zone with colonizers from Norway in Central Sweden. The Caucasus and Siberian/Manchurian refugial regions have played an important role in the origin of C. myrtilli populations in Siberia and the Russian Far East.

Review Article

Cystic Echinococcosis: An Impact Assessment of Prevention Programs in Endemic Developing Countries in Africa, Central Asia, and South America

Background. Cystic echinococcosis (CE), caused by the tapeworm species, Echinococcus granulosus sensu stricto (G1), is one of many primary neglected zoonoses worldwide. Within endemic developing countries, CE has multiple effects on animal and human health and well-being. To address such effects, veterinary and human medical sector collaboration on prevention program delivery is essential. To begin preliminary evaluations of county specific prevention programs, a critically appraised topic (CAT) was conducted. It sought to answer: What impact do CE prevention programs have on human and animal disease prevalence, in populations living in endemic developing countries within Africa, Central Asia, and South America? Methodology. The aim was to assess the ability of prevention and control program outputs to produce measurable differences in health, social, and economic outcomes (e.g., improved access to medical services, positive behavioral change, or reduced treatment costs, respectively). Included articles were obtained using predefined inclusion/exclusion criteria from the four databases (CAB Abstracts and Global Health; the National Library of Medicine (PubMed); ScienceDirect; and WHO Institutional Repository of Information Sharing (IRIS)). The articles were appraised using three checklists: the Royal College of Veterinary Surgeons (RCVS), the Critical Appraisals Skills Programme (CASP), and the Joanna Briggs Institute checklists. Results. Ten articles were selected. Geographically, 20% of studies were conducted in South America, 30% in Africa, and 50% in Central Asia. For definitive hosts, dogs, CoproELISA antigen testing, before and after Praziquantel (PZQ) de-worming, was a primary focus. For humans, who are intermediate hosts (IH), disease surveillance methods, namely ultrasound (US), were commonly assessed. Whilst for sheep, also acting as IH, disease prevention methods, such as the EG95 livestock vaccine and de-worming farm dogs, were evaluated. Common to all studies were issues of program sustainability, in terms of regular human US screening, dog de-worming, and annual sheep vaccination. This was attributed to transient and remote human or animal populations; limited access to adequate roads or hospitals; few skilled health workers or veterinarians; an over-reliance on communities to administer preventatives; and limited resources. Conclusion. Despite variations in result validity and collection periods, useful comparisons of CE endemic countries produced key research and program recommendations. Future research recommendations included testing the significance of multiple program outcomes in relation to prevalence (e.g., the social outcome: behavioral change), further research on the impact of livestock vaccinations, and the CE transmission role of waterways and sanitation. Program recommendations included calculating and distinguishing between stray versus owned dog populations; formal representation of internal and external stakeholder interests through institutional organization; establishing sustainable guidelines around the frequency of PZQ and vaccination administration; improved veterinary-human medical training and resource sharing; and combined prevention methods and multiple canine disease management.

Research Article

Cryptic Marine Diversity in the Northern Arabian Gulf: An Integrative Approach Uncovers a New Species of Oyster (Bivalvia: Ostreidae), Ostrea oleomargarita

Animal biodiversity is greatly underestimated in nontemperate marine regions, especially for intertidal benthic organisms such as oysters. Recent surveys in the northern Arabian Gulf suggest the presence of numerous unidentified species, some of which form shallow reef ecosystems while others are cryptic and found under rocks. In this study, we focused on small oysters from Kuwait, which show typical characteristics in common with the genus Ostrea except for the presence of lophine chomata that would link it to the genera Lopha, Dendostrea, and Alectryonella. Phylogenetic analyses based on mitochondrial and nuclear markers unambiguously placed the Kuwait oyster within the Ostreinae as a sister to the Japanese species Ostrea futamiensis. The hypothesis that the Kuwait oyster represents a new species was assessed with phylogenetic and species delimitation methods combined with a morphological assessment. Results corroborated the Kuwait oysters as a new species herein described as Ostrea oleomargarita Oliver, Salvi, and Al-Kandari, sp. nov. The phylogeny of the Ostreinae shows extensive disagreement between morphology-based genera and phylogenetic clades. The genus Ostrea is polyphyletic, and the form and distribution of taxonomic characters such as chomata are not as definitive as suggested in previous studies. This study, along with other recent investigations, confirmed the Arabian Gulf as a key region for discovering marine animal diversity and suggested a possible biogeographic divide between the Eastern and Western Indo-Pacific. A pattern that has been documented in a growing number of taxa and that warrants further research attention.

Research Article

A New Interactive Web-Based Polytomous Key for Species Identification of Pin Nematodes of the Genus Paratylenchus Micoletzky, 1922 (Nematoda: Paratylenchinae) with the Use of Ribosomal and Mitochondrial Genes

Pin nematodes of the genus Paratylenchus comprise 140 species. This group of nematodes is characterized by a quite homogeneous morphology and cosmopolitan distribution and is prevalent in cultivated and natural soil ecosystems. The present study describes the first interactive and illustrated web-assisted polytomous identification key for the genus Paratylenchus. The updated Paratylenchus species polytomous key was based on a wide list of 24 diagnostic characters generated for the 140 species comprising this genus. Here we developed a web-assisted method to achieve an easy and accurate Paratylenchus species characterization that will greatly improve the identification of these plant-parasitic nematodes for many diagnostic laboratories and researchers. However, this identification needs to be completed with the use of molecular markers available for the species due to the existence of species complexes studied in former researches. This idea is pointed in the polytomous key in the specific species complexes up-to-know. In some cases, the presence in the soil as survival stage of few individuals in the fourth-stage juvenile (J4) required the use of molecular markers for species identification. We suggest the use of at least a fragment of mitochondrial COI gene for species identification or the combination of nuclear D2-D3 regions of the 28S rRNA and the COI to complement each marker. However, for some species complexes, the use of the D2-D3 regions alone has not enough resolution to separate the putative species inside the species complex. Web-based polytomous key was constructed using the free software Xper3, for computers and mobile devices (smartphones, tablets, and pocket PCS).

Research Article

Reproductive Variability in Hippolytid Shrimp Shape Morphotypes

Shape morph-specific studies in hippolytid shrimps revealed significant results on their ecomorphology and evolutionary adaptations. Among the species of the genus Hippolyte, only one exhibits an unusual, sharp rostral dimorphism and has been used as an animal model for the investigation of mechanisms of the morph-specific adaptation: the intertidal Hippolyte sapphica. The species is endemic of the Central/Eastern Mediterranean basin and exhibits morph-A with a long dentate rostrum and morph-B with a short, juvenile-like one. The two morphotypes were recently confirmed to be conspecific, while offspring and morphological studies showed significant microevolutionary adaptations, which balance the disadvantage of the “rostral loss.” The present study aims to investigate the effect of such phenotypic variation on the reproductive traits of the species. We collected ovigerous females of H. sapphica in mixed (morph-A and morph-B) and unmixed populations (morph-A) along the species geographical range. We measured seven morphometric and maternal investment traits: carapace length, fecundity, embryo volume, egg density, female dry weight, brood dry weight, and reproductive output. Our results showed that ovigerous females were bigger in morph-A than in morph-B, whereas fecundity did not show any significant differences between the two morphotypes. High egg volume might be attributed to the latitudinal differences of our sampling sites compared to congenerics. Interestingly, the reproductive output was found to be bigger in morph-A specimens, suggesting that the maternal energy investment is selectively determined from the rostral presence/absence and the morphotype’s higher viability in the species populations.

Journal of Zoological Systematics and Evolutionary Research
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate29%
Submission to final decision73 days
Acceptance to publication24 days
CiteScore3.400
Journal Citation Indicator0.930
Impact Factor2.424
 Submit

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.