Table of Contents
Laser Chemistry
Volume 9, Issue 1-3, Pages 1-26

Condensed Phase Laser Induced Harpoon Reactions

Institute for Surface and Interface Science, Department of Chemistry, University of California, Irvine 92717, California, USA

Received 28 March 1988

Copyright © 1988 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Laser induced charge transfer reactions of halogens in rare gas solids and liquids provide a powerful means for the study of condensed phase dynamics. Many-body effects with respect to both electronic and nuclear coordinates, and cooperative interactions with radiation fields, are some of the studied phenomena that are highlighted in this article.

The pertinence of these ionic reactions to chemistry in solids is demonstrated in photodissociation studies of molecular halogens in rare gas matrices. The coexistence of both delocalized and localized charge transfer states in solid xenon doped with atomic halogens is presented and dynamical consequences—charge separation, self-trapping and energy storage—are discussed. Static and dynamic solvent effects in liquid phase harpoon reactions are considered. The characterization of cooperative excitations— two-photon, two-electron transitions—in liquid solutions is presented.