Abstract

The dynamics of the Time-Dependent Fluorescence Shift (TDFS) of a rigid polar excited probe dissolved in alcohol solvents at different temperatures have been studied by picosecond time-resolved spectroscopy. The results are compared to previously published results on well characterized polar systems. These results show that solvation dynamics in such systems are strongly scaled by the microscopic (singleparticle) reorientation time τM of the solvent molecules and/or by the (macroscopic) longitudinal relaxation time τL of the solvent. The key point governing this scaling is the relative interaction between the solvent molecules and the probe compared to the interaction between the solvent molecules. It is also shown that specific interactions, such as hydrogen bonded-complex formation, may play an important role.