Table of Contents
Laser Chemistry
Volume 19, Issue 1-4, Pages 291-298

Step-Scan Fourier Transform Infrared Absorption Difference Time-Resolved Spectroscopy Studies of Excited State Decay Kinetics and Electronic Structure of Low-Spin d6 Transition Metal Polypyridine Complexes With 10 Nanosecond Time Resolution

1Dept. of Chemistry, Duke University, Box 90346, Durham 27708-0346, NC, USA
2Dept. of Chemistry, University of North Carolina, Chapel Hill 27599-3290, NC, USA

Received 1 May 1997

Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Step-scan Fourier transform absorption difference time-resolved spectroscopy (S2FTIR ∆A TRS) has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of polypyridine transition metal complexes with 10 ns time resolution. The time-resolved data can be used for kinetic analysis or to generate “snapshots” of the lowest lying excited state. Shifts of vibrational bands in the excited state relative to the ground state can be used to infer significant details of the electronic structure of the excited state. The multiplex advantage of the FTIR technique allows a wide variety of vibrational bands to be analyzed for this purpose. In the example illustrated, the shift of the ester ν(CO) band in {Ru(bpy)[4,4′-(COOEt)2bpy]2}2+ compared to those in related complexes has been used to address the question of electron delocalization in the excited state.