Table of Contents
Laser Chemistry
Volume 2006, Article ID 35373, 11 pages
http://dx.doi.org/10.1155/2006/35373
Review Article

Optical Coherence Tomography for Artwork Diagnostics

Institute of Physics, Nicolaus Copernicus University, ul. Grudziądzka 5, Toruń 87 100, Poland

Received 15 September 2006; Revised 8 December 2006; Accepted 15 December 2006

Academic Editor: Costas Fotakis

Copyright © 2006 Piotr Targowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. F. Bridgman, “The future of radiography,” Bulletin of the American Institute for Conservation of Historic and Artistic Works, vol. 14, no. 2, pp. 78–80, 1974. View at Publisher · View at Google Scholar
  2. D. Ambrosini and D. Paoletti, “Holographic and speckle methods for the analysis of panel paintings. Developments since the early 1970s,” Reviews in Conservation, vol. 5, pp. 38–48, 2004.
  3. D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Applied Spectroscopy, vol. 51, no. 7, pp. 1025–1030, 1997. View at Publisher · View at Google Scholar
  4. M. Castillejo, M. Martín, and D. Silva et al., “Laser-induced breakdown spectroscopy and Raman microscopy for analysis of pigments in polychromes,” Journal of Cultural Heritage, vol. 1, supplement 1, pp. S297–S302, 2000. View at Publisher · View at Google Scholar
  5. P. Vandenabeele and L. Moens, “ The application of Raman spectroscopy for the non-destructive analysis of art objects,” in Proceedings of the 15th World Conference on Nondestructive Testing, Roma, Italy, October 2000, accessed 2006.
  6. E. R. de la Rie, “Fluorescence of paint and varnish layers—part I,” Studies in Conservation, vol. 27, no. 1, pp. 1–7, 1982. View at Publisher · View at Google Scholar
  7. E. R. de la Rie, “Fluorescence of paint and varnish layers—part II,” Studies in Conservation, vol. 27, no. 2, pp. 65–69, 1982. View at Publisher · View at Google Scholar
  8. E. R. de la Rie, “Fluorescence of paint and varnish layers—part III,” Studies in Conservation, vol. 27, no. 3, pp. 102–108, 1982. View at Publisher · View at Google Scholar
  9. D. Anglos, M. Solomidou, I. Zergioti, V. Zafiropulos, T. G. Papazoglou, and C. Fotakis, “Laser-induced fluorescence in artwork diagnostics: an application in pigment analysis,” Applied Spectroscopy, vol. 50, no. 10, pp. 1331–1334, 1996. View at Publisher · View at Google Scholar
  10. E. Walmsley, C. Metzger, J. K. Delaney, and C. Fletcher, “Improved visualization of underdrawings with solid-state detectors operating in the infrared,” Studies in Conservation, vol. 39, no. 4, pp. 217–231, 1994. View at Publisher · View at Google Scholar
  11. K. K. Taylor, M. J. Cotter, and E. V. Sayre, “Neutron activation autoradiography as a technique for conservation examination of paintings,” Bulletin of the American Institute for Conservation of Historic and Artistic Works, vol. 15, no. 2, pp. 93–102, 1975. View at Publisher · View at Google Scholar
  12. D. Huang, E. A. Swanson, and C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Publisher · View at Google Scholar
  13. E. A. Swanson, J. A. Izatt, and M. R. Hee et al., “In vivo retinal imaging by optical coherence tomography,” Optics Letters, vol. 18, no. 21, pp. 1864–1866, 1993.
  14. M. R. Hee, J. A. Izatt, and E. A. Swanson et al., “Optical coherence tomography of the human retina,” Archives of Ophthalmology, vol. 113, no. 3, pp. 325–332, 1995.
  15. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” Journal of Physics D: Applied Physics, vol. 38, no. 15, pp. 2519–2535, 2005. View at Publisher · View at Google Scholar
  16. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-Arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Optics Express, vol. 3, no. 6, pp. 219–229, 1998.
  17. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Applied Optics, vol. 31, no. 7, pp. 919–925, 1992.
  18. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Journal of Biomedical Optics, vol. 7, no. 3, pp. 457–463, 2002. View at Publisher · View at Google Scholar · View at PubMed
  19. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Optics Letters, vol. 28, no. 19, pp. 1745–1747, 2003.
  20. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express, vol. 12, no. 11, pp. 2404–2422, 2004. View at Publisher · View at Google Scholar
  21. R. A. Costa, M. Skaf, and L. A. S. Melo Jr. et al., “Retinal assessment using optical coherence tomography,” Progress in Retinal and Eye Research, vol. 25, no. 3, pp. 325–353, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express, vol. 11, no. 8, pp. 889–894, 2003.
  23. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. De Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photonics Technology Letters, vol. 16, no. 1, pp. 293–295, 2004. View at Publisher · View at Google Scholar
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. De Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Optics Express, vol. 11, no. 26, pp. 3598–3604, 2003.
  25. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Optics Express, vol. 13, no. 9, pp. 3513–3528, 2005. View at Publisher · View at Google Scholar
  26. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Optics Express, vol. 14, no. 8, pp. 3225–3237, 2006. View at Publisher · View at Google Scholar
  27. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Optics Express, vol. 13, no. 26, pp. 10523–10538, 2005. View at Publisher · View at Google Scholar
  28. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Applied Optics, vol. 41, no. 4, pp. 805–812, 2002.
  29. M. Góra, M. Pircher, and E. Götzinger et al., “Optical coherence tomography for examination of parchment degradation,” Laser Chemistry, vol. 2006, Article ID 68679, 2006, 6 pages. View at Publisher · View at Google Scholar
  30. M. Góra, P. Targowski, A. Rycyk, and J. Marczak, “Varnish ablation control by optical coherence tomography,” Laser Chemistry, vol. 2006, Article ID 10647, 2006, 7 pages. View at Publisher · View at Google Scholar
  31. I. Gorczyńska, M. Wojtkowski, and M. Szkulmowski et al., “Varnish thickness determination by spectral optical coherence tomography,” in Proceedings of the 6th International Congress on Lasers in the Conservation of Artworks (LACONA VI '05), J. Nimmrichter, W. Kautek, and M. Schreiner, Eds., Vienna, Austria, September 2006.
  32. M. Szkulmowski, M. Wojtkowski, P. Targowski, and A. Kowalczyk, “Spectral shaping and least square iterative deconvolution in spectral OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII, vol. 5316 of Proceedings of SPIE, pp. 424–431, San Jose, Calif, USA, January 2004. View at Publisher · View at Google Scholar
  33. B. Cense, N. A. Nassif, and T. C. Chen et al., “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Optics Express, vol. 12, no. 11, pp. 2435–2447, 2004. View at Publisher · View at Google Scholar
  34. A. Szkulmowska, M. Góra, and M. Targowska et al., “The applicability of optical coherence tomography at 1.55 um to the examination of oil paintings,” in Proceedings of the 6th International Congress on Lasers in the Conservation of Artworks (LACONA VI '05), J. Nimmrichter, W. Kautek, and M. Schreiner, Eds., Vienna, Austria, September 2006.
  35. M. Targowska, “Pomiary konserwatorskie z wykorzystaniem metody tomografii optycznej -OCT (Examination of objects of art with optical coherence tomography),” M.S. thesis, Department of Conservation of Paintings and Polychrome Sculpture, Nicolaus Copernicus University, Toruń, Poland, 2006, B. Rouba Advisor.
  36. T. Arecchi, M. Bellini, and C. Corsi et al., “Optical coherence tomography for painting diagnostics,” in Optical Methods for Arts and Archaeology, vol. 5857 of Proceedings of SPIE, pp. 278–282, Munich, Germany, June 2005. View at Publisher · View at Google Scholar
  37. H. Liang, M. G. Cid, and R. G. Cucu et al., “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Optics Express, vol. 13, no. 16, pp. 6133–6144, 2005. View at Publisher · View at Google Scholar
  38. H. Liang, M. G. Cid, and R. G. Cucu et al., “Optical coherence tomography: a non-invasive technique applied to conservation of paintings,” in Optical Methods for Arts and Archaeology, vol. 5857 of Proceedings of SPIE, pp. 9 pages, Munich, Germany, June 2005. View at Publisher · View at Google Scholar
  39. E. R. de la Rie, “The influence of varnishes on the appearance of paintings,” Studies in Conservation, vol. 32, no. 1, pp. 1–13, 1987. View at Publisher · View at Google Scholar
  40. P. Targowski, B. Rouba, M. Wojtkowski, I. Gorczyńska, and A. Kowalczyk, “Zastosowanie optycznej tomografii do nieinwazyjnego badania obiektów zabytkowych,” in Ars longa - vita brevis. Tradycyjne i nowoczesne metody badania dzieł sztuki. Materiały z sesji naukowej poświęconej pamięci profesora Z. Brochwicza, J. Flik, Ed., pp. 121–129, Wydawnictwo UMK, Toruń, Poland, 2003.
  41. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “The application of optical coherence tomography to non-destructive examination of museum objects,” Studies in Conservation, vol. 49, no. 2, pp. 107–114, 2004.
  42. M.-L. Yang, C.-W. Lu, I.-J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry, vol. 46, no. 2, pp. 171–182, 2004. View at Publisher · View at Google Scholar
  43. T. Bajraszewski, I. Gorczyńska, B. Rouba, and P. Targowski, “Spectral domain optical coherence tomography as the profilometric tool for examination of the environmental influence on paintings on canvas,” in Proceedings of the 6th International Congress on Lasers in the Conservation of Artworks (LACONA VI '05), J. Nimmrichter, W. Kautek, and M. Schreiner, Eds., Vienna, Austria, September 2006.
  44. P. Targowski, T. Bajraszewski, and I. Gorczyńska et al., “Spectral optical coherence tomography for nondestructive examinations,” submitted to Optica Applicata.
  45. P. Targowski, M. Góra, and T. Bajraszewski et al., “Optical coherence tomography for tracking canvas deformation,” Laser Chemistry, vol. 2006, Article ID 93658, 2006, 8 pages. View at Publisher · View at Google Scholar