Table of Contents
Leukemia Research and Treatment
Volume 2012 (2012), Article ID 128617, 9 pages
http://dx.doi.org/10.1155/2012/128617
Review Article

Pathogenesis of Metastatic Calcification and Acute Pancreatitis in Adult T-Cell Leukemia under Hypercalcemic State

1Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
2Department of Pathology, Nagasaki Prefecture Medical Health Operation Group, Isahaya 859-0401, Japan
3Departent of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan

Received 25 July 2011; Accepted 14 September 2011

Academic Editor: Kunihiro Tsukasaki

Copyright © 2012 Masachika Senba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takatsuki, T. Uchiyama, K. Sagawa, and J. Yodoi, “Adult T cell leukemia in Japan,” in Topics in Hematology, S. Seno, F. Takatu, and S. Irino, Eds., pp. 73–77, Excerpta Medica, Amsterdam, The Netherlands, 1977. View at Google Scholar
  2. T. Uchiyama, J. Yodoi, K. Sagawa, K. Takatsuki, and H. Uchino, “Adult T-cell leukemia: clinical and hematologic features of 16 cases,” Blood, vol. 50, no. 3, pp. 481–492, 1977. View at Google Scholar
  3. B. J. Poiesz, F. W. Ruscetti, A. F. Gazdar, P. A. Bunn, J. D. Minna, and R. C. Gallo, “Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7415–7419, 1980. View at Google Scholar
  4. Y. Hinuma, K. Nagata, and M. Hanaoka, “Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 10, pp. 6476–6480, 1981. View at Google Scholar · View at Scopus
  5. M. Yoshida, I. Miyoshi, and Y. Hinuma, “Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 6, pp. 2031–2035, 1982. View at Google Scholar · View at Scopus
  6. T. Watanabe, M. Seiki, and M. Yoshida, “HTLV type I (U.S. isolate) and ATLV (Japanese isolate) are the same species of human retrovirus,” Virology, vol. 133, no. 1, pp. 238–241, 1984. View at Google Scholar · View at Scopus
  7. T. Ishikawa, “Current status of therapeutic approaches to adult T-Cell leukemia,” International Journal of Hematology, vol. 78, no. 4, pp. 304–311, 2003. View at Google Scholar · View at Scopus
  8. M. Kannagi, T. Ohashi, N. Harashima, S. Hanabuchi, and A. Hasegawa, “Immunological risks of adult T-cell leukemia at primary HTLV-I infection,” Trends in Microbiology, vol. 12, no. 7, pp. 346–352, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. Matsuoka and K. T. Jeang, “Human T-cell leukemia virus type I at age 25: a progress report,” Cancer Research, vol. 65, no. 11, pp. 4467–4470, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, and E. L. Murphy, “Global epidemiology of HTLV-I infection and associated diseases,” Oncogene, vol. 24, no. 39, pp. 6058–6068, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. Verdonck, E. González, S. van Dooren, A. M. Vandamme, G. Vanham, and E. Gotuzzo, “Human T-lymphotropic virus 1: recent knowledge about an ancient infection,” The Lancet Infectious Diseases, vol. 7, no. 4, pp. 266–281, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. D. U. Gonçalves, F. A. Proietti, J. G. R. Ribas et al., “Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases,” Clinical Microbiology Reviews, vol. 23, no. 3, pp. 577–589, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Gessain, F. Barin, and J. C. Vernant, “Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis,” The Lancet, vol. 2, no. 8452, pp. 407–410, 1985. View at Google Scholar · View at Scopus
  14. M. Osame, K. Usuku, and S. Izumo, “HTLV-I associated myelopathy, a new clinical entity,” The Lancet, vol. 1, no. 8488, pp. 1031–1032, 1986. View at Google Scholar · View at Scopus
  15. M. M. Aye, E. Matsuoka, T. Moritoyo et al., “Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system,” Acta Neuropathologica, vol. 100, no. 3, pp. 245–252, 2000. View at Google Scholar · View at Scopus
  16. J. A. Sakai, M. Nagai, M. B. Brennan, C. A. Mora, and S. Jacobson, “In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion of CD8+ T cells,” Blood, vol. 98, no. 5, pp. 1506–1511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Kubota, S. S. Soldan, R. Martin, and S. Jacobson, “Selected cytotoxic T lymphocytes with high specificity for HTLV-1 in cerebrospinal fluid from a HAM/TSP patient,” Journal of NeuroVirology, vol. 8, no. 1, pp. 53–57, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. K. C. Goon, T. Igakura, E. Hanon et al., “High circulating frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4+ T cells in patients with HTLV-1-associated neurological disease,” Journal of Virology, vol. 77, no. 17, pp. 9716–9722, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Muraro, K. P. Wandinger, B. Bielekova et al., “Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders,” Brain, vol. 126, part 1, pp. 20–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Olindo, A. Lézin, P. Cabre et al., “HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression,” Journal of the Neurological Sciences, vol. 237, no. 1-2, pp. 53–59, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Senba, K. Kawai, S. Chiyoda, and O. Takahara, “Metastatic liver calcification in adult T-cell leukemia-lymphoma associated with hypercalcemia,” American Journal of Gastroenterology, vol. 85, no. 9, pp. 1202–1203, 1990. View at Google Scholar · View at Scopus
  22. M. Senba and K. Kawai, “Metastatic calcification due to hypercalcemia in adult T-cell leukemia-lymphoma (ATLL),” Zentralblatt für Pathologie, vol. 137, no. 4, pp. 341–345, 1991. View at Google Scholar · View at Scopus
  23. M. Senba, T. Nakamura, K. Kawai, and M. I. Senba, “HTLV-I and acute pancreatitis,” The Lancet, vol. 337, no. 8755, p. 1489, 1991. View at Google Scholar · View at Scopus
  24. M. Senba and M. I. Senba, “Acute pancreatitis associated with hyplercalcaemia in adult T-cell leukaemia-lymphoma,” Journal of Gastroenterology and Hepatology, vol. 11, no. 2, pp. 180–182, 1996. View at Google Scholar · View at Scopus
  25. M. Senba and K. Kawai, “Hypercalcemia and production of parathyroid hormone-like protein in adult T-cell leukemia-lymphoma,” European Journal of Haematology, vol. 48, no. 5, pp. 278–279, 1992. View at Google Scholar · View at Scopus
  26. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Koide, S. Kinugawa, N. Takahashi, and N. Udagawa, “Osteoclastic bone resorption induced by innate immune responses,” Periodontology 2000, vol. 54, no. 1, pp. 235–246, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. H. Takayanagi, “New immune connections in osteoclast formation,” Annals of the New York Academy of Sciences, vol. 1192, pp. 117–123, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. K. Nosaka, T. Miyamoto, T. Sakai, H. Mitsuya, T. Suda, and M. Matsuoka, “Mechanism of hypercalcemia in adult T-cell leukemia: overexpression of receptor activator of nuclear factor κb ligand on adult T-cell leukemia cells,” Blood, vol. 99, no. 2, pp. 634–640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. G. D. Roodman, “Regulation of osteoclast differentiation,” Annals of the New York Academy of Sciences, vol. 1068, no. 1, pp. 100–109, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. Vega, N. M. Maalouf, and K. Sakhaee, “Clinical review: the role of receptor activator of nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin: clinical implications,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4514–4521, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. Parrula, B. Zimmerman, P. Nadella et al., “Expression of tumor invasion factors determines systemic engraftment and induction of humoral hypercalcemia in a mouse model of adult T-cell leukemia,” Veterinary Pathology, vol. 46, no. 5, pp. 1003–1014, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Fili, M. Karalaki, and B. Schaller, “Therapeutic implications of osteoprotegerin,” Cancer Cell International, vol. 9, p. 26, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. P. Trouvin and V. Goëb, “Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss,” Clinical Interventions in Aging, vol. 5, pp. 345–354, 2010. View at Google Scholar
  35. E. D. Chan, D. V. Morales, C. H. Welsh, M. T. McDermott, and M. I. Schwarz, “Calcium deposition with or without bone formation in the lung,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 12, pp. 1654–1669, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. R. M. Mulligan, “Metastatic calcification,” Archives of Pathology, vol. 43, no. 2, pp. 177–230, 1947. View at Google Scholar
  37. G. D. Roodman, “Mechanisms of bone lesions in multiple myeloma and lymphoma,” Cancer, vol. 80, no. 8, pp. 1557–1563, 1997. View at Google Scholar · View at Scopus
  38. T. Kiyokawa, K. Yamaguchi, and M. Takeya, “Hypercalcemia and osteoclast proliferation in adult T-cell leukemia,” Cancer, vol. 59, no. 6, pp. 1187–1191, 1987. View at Google Scholar · View at Scopus
  39. M. Nakamura, A. Ohishi, R. Watanabe et al., “Adult T-cell leukemia with hypercalcemia-induced metastatic calcification in the lungs due to production of parathyroid hormone-related protein,” Internal Medicine, vol. 40, no. 5, pp. 409–413, 2001. View at Google Scholar · View at Scopus
  40. Y. Taguchi, G. Fuyuno, S. Shioya et al., “MR appearance of pulmonary metastatic calcification,” Journal of Computer Assisted Tomography, vol. 20, no. 1, pp. 38–41, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Kumamoto, R. Ichinohasama, T. Sawai et al., “Multiple organ failure associated with extensive metastatic calcification in a patient with an intermediate state of human T lymphotropic virus type I (HTLV-1) infection: report of an autopsy case,” Pathology International, vol. 48, no. 4, pp. 313–318, 1998. View at Google Scholar · View at Scopus
  42. J. Haratake, N. Ishii, A. Horie, M. Matsumoto, S. Oda, and K. Satoh, “Adult T-cell leukemia complicated by hypercalcemia: report of three autopsy cases with special reference to the etiologic factor of hypercalcemia,” Acta Pathologica Japonica, vol. 35, no. 2, pp. 437–448, 1985. View at Google Scholar
  43. T. Hosokawa, T. Itoga, Y. Saburi, R. Mizutani, T. Fujioka, and H. Yamashita, “An autopsy case of adult T cell leukemia died of acute hemorrhagic pancreatitis,” Journal of Kyushu Hematological Society, vol. 32, no. 3-4, pp. 75–81, 1984, (in Japanese with English abstract). View at Google Scholar
  44. Y. Dazai, I. Katoh, Y. Hara, R. Yoshida, and K. Kurihara, “Two cases of adult T-cell leukemia associated with acute pancreatitis due to hypercalcemia,” American Journal of Medicine, vol. 90, no. 2, pp. 251–254, 1991. View at Google Scholar · View at Scopus
  45. Y. Ono, T. Kimura, I. Nakano et al., “Acute pancreatitis induced by hypercalcaemia associated with adult T-cell leukaemia: a case report,” Journal of Gastroenterology and Hepatology, vol. 11, no. 2, pp. 193–195, 1996. View at Google Scholar · View at Scopus
  46. K. Kinoshita, S. Kamihira, and S. Ikeda, “Clinical, hematologic, and pathologic feature of leukemic T-cell lymphoma,” Cancer, vol. 50, no. 8, pp. 1554–1562, 1982. View at Google Scholar · View at Scopus
  47. S. Fukumoto, T. Matsumoto, K. Ikeda et al., “Clinical evaluation of calcium metabolism in adult T-cell leukemia/lymphoma,” Archives of Internal Medicine, vol. 148, no. 4, pp. 921–925, 1988. View at Google Scholar · View at Scopus
  48. T. W. Frick, D. S. Fryd, D. E. R. Sutherland, R. L. Goodale, R. L. Simmons, and J. S. Najarian, “Hypercalcemia associated with pancreatitis and hyperamylasemia in renal transplant recipients. Data from the Minnesota randomized trial of cyclosporine versus antilymphoblast azathioprine,” American Journal of Surgery, vol. 154, no. 5, pp. 487–489, 1987. View at Google Scholar · View at Scopus
  49. T. R. Kelly, “Relationship of hyperparathyroidism to pancreatitis,” Archives of Surgery, vol. 97, no. 2, pp. 267–274, 1968. View at Google Scholar · View at Scopus
  50. F. B. Thomas, D. Sinar, J. H. Caldwell, H. S. Mekhjian, and J. M. Falko, “Stimulation of pancreatic secretion of water and electrolytes by furosemide,” Gastroenterology, vol. 73, no. 2, pp. 221–225, 1977. View at Google Scholar
  51. L. J. Suva, G. A. Winslow, and R. E. H. Wettenhall, “A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression,” Science, vol. 237, no. 4817, pp. 893–896, 1987. View at Google Scholar · View at Scopus
  52. G. J. Strewler, P. H. Stern, J. W. Jacobs et al., “Parathyroid hormonelike protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone,” Journal of Clinical Investigation, vol. 80, no. 6, pp. 1803–1807, 1987. View at Google Scholar · View at Scopus
  53. W. J. Burtis, T. Wu, and C. Bunch, “Identification of a novel 17,000-dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumor associated with humoral hypercalcemia of malignancy,” Journal of Biological Chemistry, vol. 262, no. 15, pp. 7151–7156, 1987. View at Google Scholar · View at Scopus
  54. N. Horiuchi, M. P. Caulfield, J. E. Fisher et al., “Similarity of synthetic peptide from human tumor to parathyroid hormone in vivo and in vitro,” Science, vol. 238, no. 4833, pp. 1566–1568, 1987. View at Google Scholar · View at Scopus
  55. B. E. Kemp, J. M. Moseley, C. P. Rodda et al., “Parathyroid hormone related protein of malignancy: active synthetic fragments,” Science, vol. 238, no. 4833, pp. 1568–1570, 1987. View at Google Scholar · View at Scopus
  56. A. F. Stewart, M. Mangin, T. Wu et al., “Synthetic human parathyroid hormone-like protein stimulates bone resorption and causes hypercalcemia in rats,” Journal of Clinical Investigation, vol. 81, no. 2, pp. 596–600, 1988. View at Google Scholar · View at Scopus
  57. T. J. Rosol and C. C. Capen, “Pathogenesis of humoral hypercalcemia of malignancy,” Domestic Animal Endocrinology, vol. 5, no. 1, pp. 1–21, 1988. View at Google Scholar · View at Scopus
  58. A. E. Broadus, M. Mangin, K. Ikeda et al., “Humoral hypercalcemia of cancer: identification of a novel parathyroid hormone-like peptide,” The New England Journal of Medicine, vol. 319, no. 9, pp. 556–563, 1988. View at Google Scholar · View at Scopus
  59. K. Ikeda, R. Okazaki, D. Inoue, H. Ohno, E. Ogata, and T. Matsumoto, “Interleukin-2 increases production and secretion of parathyroid hormone- related peptide by human T cell leukemia virus type I-infected T cells: possible role in hypercalcemia associated with adult T cell leukemia,” Endocrinology, vol. 132, no. 6, pp. 2551–2556, 1993. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Mori, K. Ohsumi, S. Murakami et al., “Enhancing effect of interleukin-2 on production of parathyroid hormone-related protein by adult T-Cell leukemia cells,” Japanese Journal of Cancer Research, vol. 84, no. 4, pp. 425–430, 1993. View at Google Scholar · View at Scopus
  61. M. Ohmori, M. Nagai, M. Fujita et al., “A novel mature B-cell line (DOBIL-6) producing both parathyroid hormone- related protein and interleukin-6 from a myeloma patient presenting with hypercalcaemia,” British Journal of Haematology, vol. 101, no. 4, pp. 688–693, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Ota, T. Nakajima, I. Nakazawa et al., “A nucleotide variant in the promoter region of the interleukin-6 gene associated with decreased bone mineral density,” Journal of Human Genetics, vol. 46, no. 5, pp. 267–272, 2001. View at Google Scholar · View at Scopus
  63. G. Franchini, F. Wong-Staal, and R. C. Gallo, “Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 19, pp. 6207–6211, 1984. View at Google Scholar · View at Scopus
  64. T. Kinoshita, M. Shimoyama, K. Tobinai et al., “Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5620–5624, 1989. View at Google Scholar · View at Scopus
  65. T. Watanabe, K. Yamaguchi, K. Takatsuki, M. Osame, and M. Yoshida, “Constitutive expression of parathyroid hormone-related protein gene in human T cell leukemia virus type 1 (HTLV-1) carriers and adult T cell leukemia patients that can be trans-activated by HTLV-1 tax gene,” Journal of Experimental Medicine, vol. 172, no. 3, pp. 759–765, 1990. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Dittmer, S. D. Gitlin, R. L. Reid, and J. N. Brady, “Transactivation of the P2 promoter of parathyroid hormone-related protein by human T-cell lymphotropic virus type I Tax1: evidence for the involvement of transcription factor Ets1,” Journal of Virology, vol. 67, no. 10, pp. 6087–6095, 1993. View at Google Scholar · View at Scopus
  67. D. Prager, J. D. Rosenblatt, and E. Ejima, “Hypercalcemia, parathyroid hormone-related protein expression and human T-cell leukemia virus infection,” Leukemia and Lymphoma, vol. 14, no. 5-6, pp. 395–400, 1994. View at Google Scholar · View at Scopus
  68. A. Takaori-Kondo, K. Imada, I. Yamamoto et al., “Parathyroid hormone-related protein-induced hypercalcemia in SCID mice engrafted with adult T-cell leukemia cells,” Blood, vol. 91, no. 12, pp. 4747–4751, 1998. View at Google Scholar · View at Scopus
  69. K. Matsuzaki, K. Katayama, Y. Takahashi et al., “Human osteoclast-like cells are formed from peripheral blood mononuclear cells in a coculture with SaOS-2 cells transfected with the parathyroid hormone (PTH)/PTH-related protein receptor gene,” Endocrinology, vol. 140, no. 2, pp. 925–932, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Yamaguchi, T. Kiyokawa, T. Watanabe et al., “Increased serum levels of C-terminal parathyroid hormone-related protein in different diseases associated with HTLV-1 infection,” Leukemia, vol. 8, no. 10, pp. 1708–1711, 1994. View at Google Scholar · View at Scopus
  71. C. Menaa, N. Kurihara, and G. D. Roodman, “CFU-GM-derived cells form osteoclasts at a very high efficiency,” Biochemical and Biophysical Research Communications, vol. 267, no. 3, pp. 943–946, 2000. View at Publisher · View at Google Scholar · View at PubMed
  72. F. Arai, T. Miyamoto, O. Ohneda et al., “Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors,” Journal of Experimental Medicine, vol. 190, no. 12, pp. 1741–1754, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. D. L. Lacey, E. Timms, H. L. Tan et al., “Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation,” Cell, vol. 93, no. 2, pp. 165–176, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. M. J. A. T. Suda and N. Takahashi, “Contributions to osteoclast biology from Japan,” Proceedings of the Japan Academy Series B, vol. 84, no. 10, pp. 419–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. M. Blair, Y. Zheng, and C. R. Dunstan, “RANK ligand,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 6, pp. 1077–1081, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. H. Hsu, D. L. Lacey, C. R. Dunstan et al., “Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3540–3545, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. D. M. Anderson, E. Maraskovsky, W. L. Billingsley et al., “A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function,” Nature, vol. 390, no. 6656, pp. 175–179, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. L. C. Hofbauer and M. Schoppet, “Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases,” Journal of the American Medical Association, vol. 292, no. 4, pp. 490–495, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. H. L. Wright, H. S. McCarthy, J. Middleton, and M. J. Marshall, “RANK, RANKL and osteoprotegerin in bone biology and disease,” Current Reviews in Musculoskeletal Medicine, vol. 2, no. 1, pp. 56–64, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. A. O'Brien, J. H. H. Williams, and M. J. Marshall, “Osteoprotegerin is produced when prostaglandin synthesis is inhibited causing osteoclasts to detach from the surface of mouse parietal bone and attach to the endocranial membrane,” Bone, vol. 28, no. 2, pp. 208–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. W. S. Simonet, D. L. Lacey, C. R. Dunstan et al., “Osteoprotegerin: a novel secreted protein involved in the regulation of bone density,” Cell, vol. 89, no. 2, pp. 309–319, 1997. View at Google Scholar · View at Scopus
  82. K. M. Woo, Y. Choi, S. H. Ko, J. S. Ko, K. O. Oh, and K. K. Kim, “Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones,” Experimental and Molecular Medicine, vol. 34, no. 5, pp. 347–352, 2002. View at Google Scholar · View at Scopus
  83. Y. Y. Kong, W. J. Boyle, and J. M. Penninger, “Osteoprotegerin ligand: a regulator of immune responses and bone physiology,” Immunology Today, vol. 21, no. 10, pp. 495–502, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Bolon, C. Carter, M. Daris et al., “Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis,” Molecular Therapy, vol. 3, no. 2, pp. 197–205, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. T. Kondo, R. Kitazawa, S. Maeda, and S. Kitazawa, “1α,25 dihydroxyvitamin D3 rapidly regulates the mouse osteoprotegerin gene through dual pathways,” Journal of Bone and Mineral Research, vol. 19, no. 9, pp. 1411–1419, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. T. Watanabe, “HTLV-V-1-associated diseases,” International Journal of Hematology, vol. 66, no. 3, pp. 257–278, 1997. View at Google Scholar · View at Scopus
  87. Y. Wano, T. Hattori, M. Matsuoka et al., “Interleukin 1 gene expression in adult T cell leukemia,” Journal of Clinical Investigation, vol. 80, no. 3, pp. 911–916, 1987. View at Google Scholar · View at Scopus
  88. Y. Niitsu, Y. Urushizaki, Y. Koshida et al., “Expression of TGF-beta gene in adult T cell leukemia,” Blood, vol. 71, no. 1, pp. 263–266, 1988. View at Google Scholar · View at Scopus
  89. S. Honda, K. Yamaguchi, Y. Miyake et al., “Production of parathyroid hormone-related protein in adult T-cell leukemia cells,” Japanese Journal of Cancer Research, vol. 79, no. 12, pp. 1264–1268, 1988. View at Google Scholar · View at Scopus
  90. S. J. Kim, J. H. Kehrl, J. Burton et al., “Transactivation of the transforming growth factor β1 (TGF-β1) gene by human T lymphotropic virus type 1 Tax: a potential mechanism for the increased production of TGF-β1 in adult T cell leukemia,” Journal of Experimental Medicine, vol. 172, no. 1, pp. 121–129, 1990. View at Publisher · View at Google Scholar · View at Scopus
  91. P. M. Villiger, M. T. Cronin, T. Amenomori, W. Wachsman, and M. Lotz, “IL-6 production by human T lymphocytes. Expression in HTLV-1-infected but not in normal T cells,” Journal of Immunology, vol. 146, no. 2, pp. 550–559, 1991. View at Google Scholar · View at Scopus
  92. Y. Okada, J. Tsukada, K. Nakano, S. Tonai, S. Mine, and Y. Tanaka, “Macrophage inflammatory protein-1α induces hypercalcemia in adult T-cell leukemia,” Journal of Bone and Mineral Research, vol. 19, no. 7, pp. 1105–1111, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. M. Matsuoka, “Human T-cell leukemia virus type I and adult T-cell leukemia,” Oncogene, vol. 22, no. 33, pp. 5131–5140, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. M. Matsuoka and K. T. Jeang, “Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation,” Nature Reviews Cancer, vol. 7, no. 4, pp. 270–280, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. X. Lianping, T. P. Bushnell, C. Louise et al., “NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis,” Journal of Bone and Mineral Research, vol. 17, no. 7, pp. 1200–1210, 2002. View at Google Scholar · View at Scopus
  96. M. D. Lairmore, L. Silverman, and L. Ratner, “Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation,” Oncogene, vol. 24, no. 39, pp. 6005–6015, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. M. Z. Dewan, K. Terashima, M. Taruishi et al., “Rapid tumor formation of human T-cell leukemia virus type 1-infected cell lines in novel NOD-SCID/γcnull mice: suppression by an inhibitor against NF-κB,” Journal of Virology, vol. 77, no. 9, pp. 5286–5294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Liu, K. Dole, J. R. L. Stanley et al., “Engraftment and tumorigenesis of HTLV-1 transformed T cell lines in SCID/bg and NOD/SCID mice,” Leukemia Research, vol. 26, no. 6, pp. 561–567, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Ohsugi, K. Yamaguchi, T. Kumasaka et al., “Rapid tumor death model for evaluation of new therapeutic agents for adult T-cell leukemia,” Laboratory Investigation, vol. 84, no. 2, pp. 263–266, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. V. Richard, M. D. Lairmore, P. L. Green et al., “Humoral hypercalcemia of malignancy: severe combined immunodeficient/beige mouse model of adult T-cell lymphoma independent of human T-cell lymphotropic virus type-1 tax expression,” American Journal of Pathology, vol. 158, no. 6, pp. 2219–2228, 2001. View at Google Scholar · View at Scopus
  101. Y. Sagara, Y. Inoue, Y. Sagara, and S. Kashiwagi, “Involvement of molecular mimicry between human T-cell leukemia virus type 1 gp46 and osteoprotegerin in induction of hypercalcemia,” Cancer Science, vol. 100, no. 3, pp. 490–496, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. S. T. Shu, C. K. Martin, N. K. Thudi, W. P. Dirksen, and T. J. Rosol, “Osteolytic bone resorption in adult T-cell leukemia/lymphoma,” Leukemia and Lymphoma, vol. 51, no. 4, pp. 702–714, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. N. Polakowski, H. Gregory, J. M. Mesnard, and I. Lemasson, “Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain,” Retrovirology, vol. 7, p. 61, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus