Table of Contents
Leukemia Research and Treatment
Volume 2012 (2012), Article ID 482905, 17 pages
http://dx.doi.org/10.1155/2012/482905
Research Article

PKCδ Regulates Translation Initiation through PKR and eIF2α in Response to Retinoic Acid in Acute Myeloid Leukemia Cells

1Department of Experimental Therapeutics, Unit 422, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
2Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
3Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA

Received 14 February 2012; Revised 8 May 2012; Accepted 10 May 2012

Academic Editor: George P. Studzinski

Copyright © 2012 Bulent Ozpolat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Altucci and H. Gronemeyer, “The promise of retinoids to fight against cancer,” Nature Reviews Cancer, vol. 1, no. 3, pp. 181–193, 2001. View at Google Scholar · View at Scopus
  2. M. Lanotte, V. Martin-Thouvenin, S. Najman, P. Balerini, F. Valensi, and R. Berger, “NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3),” Blood, vol. 77, no. 5, pp. 1080–1086, 1991. View at Google Scholar · View at Scopus
  3. T. R. Breitman, S. J. Collins, and B. R. Keene, “Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid,” Blood, vol. 57, no. 6, pp. 1000–1004, 1981. View at Google Scholar · View at Scopus
  4. C. Chomienne, P. Fenaux, and L. Degos, “Retinoid differentiation therapy in promyelocytic leukemia,” FASEB Journal, vol. 10, no. 9, pp. 1025–1030, 1996. View at Google Scholar · View at Scopus
  5. Z. X. Shen, G. Q. Chen, J. H. Ni et al., “Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (AFL): II. Clinical efficacy and pharmacokinetics in relapsed patients,” Blood, vol. 89, no. 9, pp. 3354–3360, 1997. View at Google Scholar · View at Scopus
  6. M. J. Clemens and U. A. Bommer, “Translational control: the cancer connection,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 1, pp. 1–23, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. E. Willis, “Translational control of growth factor and proto-oncogene expression,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 1, pp. 73–86, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. C. O. Brostrom and M. A. Brostrom, “Regulation of translational initiation during cellular responses to stress,” Progress in Nucleic Acid Research and Molecular Biology, vol. 58, pp. 79–125, 1998. View at Google Scholar · View at Scopus
  9. M. J. Clemens, “Initiation factor eIF2α phosphorylation in stress responses and apoptosis,” Progress in Molecular and Subcellular Biology, vol. 27, pp. 57–89, 2001. View at Google Scholar · View at Scopus
  10. M. J. Clemens, “Targets and mechanisms for the regulation of translation in malignant transformation,” Oncogene, vol. 23, no. 18, pp. 3180–3188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Donze, R. Jagus, A. E. Koromilas, J. W. B. Hershey, and N. Sonenberg, “Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells,” The EMBO Journal, vol. 14, no. 15, pp. 3828–3834, 1995. View at Google Scholar · View at Scopus
  12. V. M. Pain, “Initiation of protein synthesis in eukaryotic cells,” European Journal of Biochemistry, vol. 236, no. 3, pp. 747–771, 1996. View at Google Scholar · View at Scopus
  13. T. E. Dever, “Gene-specific regulation by general translation factors,” Cell, vol. 108, no. 4, pp. 545–556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Sudhakar, A. Ramachandran, S. Ghosh, S. E. Hasnain, R. J. Kaufman, and K. V. A. Ramaiah, “Phosphorylation of serine 51 in initiation factor 2α (eIF2α) promotes complex formation between eIF2α(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B,” Biochemistry, vol. 39, no. 42, pp. 12929–12938, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Datta, R. Datta, S. Mukherjee, and Z. Zhang, “Increased phosphorylation of eukaryotic initiation factor 2α at the G2/M boundary in human osteosarcoma cells correlates with deglycosylation of p67 and a decreased rate of protein synthesis,” Experimental Cell Research, vol. 250, no. 1, pp. 223–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Leroux and I. M. London, “Regulation of protein synthesis by phosphorylation of eukaryotic initiation factor 2α in intact reticulocytes and reticulocyte lysates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 7 I, pp. 2147–2151, 1982. View at Google Scholar · View at Scopus
  17. A. Lazaris-Karatzas, K. S. Montine, and N. Sonenberg, “Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap,” Nature, vol. 345, no. 6275, pp. 544–547, 1990. View at Publisher · View at Google Scholar · View at Scopus
  18. A. DeBenedetti and R. E. Rhoads, “Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 21, pp. 8212–8216, 1990. View at Google Scholar · View at Scopus
  19. A. DeBenedetti and A. L. Harris, “EIF4E expression in tumors: its possible role in progression of malignancies,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 1, pp. 59–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Fukuchi-Shimogori, I. Ishii, K. Kashiwagi, H. Mashiba, H. Ekimoto, and K. Igarashi, “Malignant transformation by overproduction of translation initiation factor eIF4G,” Cancer Research, vol. 57, no. 22, pp. 5041–5044, 1997. View at Google Scholar · View at Scopus
  21. C. Bauer, I. Diesinger, N. Brass, H. Steinhart, H. Iro, and E. U. Meese, “Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma,” Cancer, vol. 92, no. 4, pp. 822–829, 2001. View at Google Scholar
  22. M. Böhm, K. Sawicka, J. P. Siebrasse, A. Brehmer-Fastnacht, R. Peters, and K. H. Klempnauer, “The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA,” Oncogene, vol. 22, no. 31, pp. 4905–4910, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. I. B. Rosenwald, D. B. Rhoads, L. D. Callanan, K. J. Isselbacher, and E. V. Schmidt, “Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6175–6178, 1993. View at Google Scholar · View at Scopus
  24. I. B. Rosenwald, “Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2α in transformed cells,” Cancer Letters, vol. 102, no. 1-2, pp. 113–123, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Wek, H. Y. Jiang, and T. G. Anthony, “Coping with stress: EIF2 kinases and translational control,” Biochemical Society Transactions, vol. 34, no. 1, pp. 7–11, 2006. View at Google Scholar · View at Scopus
  26. I. Topisirovic, M. L. Guzman, M. J. McConnell et al., “Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis,” Molecular and Cellular Biology, vol. 23, no. 24, pp. 8992–9002, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Eberle, K. Krasagakis, and C. E. Orfanos, “Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro,” International Journal of Cancer, vol. 71, no. 3, pp. 396–401, 1997. View at Publisher · View at Google Scholar
  28. A. M. Krichevsky, E. Metzer, and H. Rosen, “Translational control of specific genes during differentiation of HL-60 cells,” The Journal of Biological Chemistry, vol. 274, no. 20, pp. 14295–14305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Meani, S. Minardi, S. Licciulli et al., “Molecular signature of retinoic acid treatment in acute promyelocytic leukemia,” Oncogene, vol. 24, no. 20, pp. 3358–3368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. N. Jackson and D. A. Foster, “The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival,” FASEB Journal, vol. 18, no. 6, pp. 627–636, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Coligan, A. M. Kruisbeck, D. H. Margulies, E. M. Shevach, and W. Strober, Current Protocols in Immunology, vol. 1, Wiley-Interscience, New York, NY, USA, 1995.
  32. M. N. Harris, B. Ozpolat, F. Abdi et al., “Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia,” Blood, vol. 104, no. 5, pp. 1314–1323, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Ozpolat, U. Akar, M. Steiner et al., “Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells,” Molecular Cancer Research, vol. 5, no. 1, pp. 95–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Ozpolat, U. Akar, M. Harris et al., “All-trans-retinoic acid and arsenic trioxide (ATO)-induced supression of translational initiation involves death associated protein 5 (DAP5/p97/NAT1) in leukemia cell differentiation and apoptosis,” Apoptosis, vol. 4, pp. 1–11, 2008. View at Google Scholar
  35. C. N. Landen Jr., A. Chavez-Reyes, C. Bucana et al., “Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery,” Cancer Research, vol. 65, no. 15, pp. 6910–6918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Kornblau, Y. Qiu, W. Chen et al., “Proteomic profiling of 150 proteins in 511 acute myelogenous leukemia (AML) patient samples using reverse phase proteins arrays (RPPA) reveals recurrent proteins expression signatures with prognostic implications,” Blood, vol. 112, no. 11, pp. 281–282, 2008. View at Google Scholar
  37. S. M. Kornblau, N. Singh, Y. Qiu, W. Chen, N. Zhang, and K. R. Coombes, “Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia,” Clinical Cancer Research, vol. 16, no. 6, pp. 1865–1874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Giannì, M. H. M. Koken, M. K. Chelbi-Alix et al., “Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells,” Blood, vol. 91, no. 11, pp. 4300–4310, 1998. View at Google Scholar · View at Scopus
  39. A. Grolleau, N. Sonenberg, J. Wietzerbin, and L. Beretta, “Differential regulation of 4E-BP1 and 4E-BP2, two repressors of translation initiation, during human myeloid cell differentiation,” Journal of Immunology, vol. 162, no. 6, pp. 3491–3497, 1999. View at Google Scholar · View at Scopus
  40. A. Kentsis, E. C. Dwyer, J. M. Perez et al., “The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E,” Journal of Molecular Biology, vol. 312, no. 4, pp. 609–623, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Sheikh and A. J. Fornace, “Regulation of translation initiation following stress,” Oncogene, vol. 18, no. 45, pp. 6121–6128, 1999. View at Google Scholar · View at Scopus
  42. R. J. Kaufman, “Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls,” Genes and Development, vol. 13, pp. 1211–1233, 1999. View at Google Scholar
  43. R. C. Wek, “EIF-2 kinases: regulators of general and gene-specific translation initiation,” Trends in Biochemical Sciences, vol. 19, no. 11, pp. 491–496, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. E. A. Kohlhepp, M. E. Condon, and A. W. Hamburger, “Recombinant human interferon α enhancement of retinoic-acid-induced differentiation of HL-60 cells,” Experimental Hematology, vol. 15, no. 4, pp. 414–418, 1987. View at Google Scholar · View at Scopus
  45. Y. Atsumi, R. C. Dodd, F. W. Maddux, S. J. Citron, and T. K. Gray, “Retinoids induce U937 cells to express macrophage phenotype,” American Journal of the Medical Sciences, vol. 292, no. 3, pp. 152–156, 1986. View at Google Scholar · View at Scopus
  46. J. Drach, G. Lopez-Berestein, T. McQueen, M. Andreeff, and K. Mehta, “Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-trans-retinoic acid,” Cancer Research, vol. 53, no. 9, pp. 2100–2104, 1993. View at Google Scholar · View at Scopus
  47. Z. Balajthy, K. Csomós, G. Vámosi, A. Szántó, M. Lanotte, and L. Fésüs, “Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions,” Blood, vol. 108, no. 6, pp. 2045–2054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kambhampati, Y. Li, A. Verma et al., “Activation of protein kinase Cδ by all-trans-retinoic acid,” The Journal of Biological Chemistry, vol. 278, no. 35, pp. 32544–32551, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Gschwendt, H. J. Muller, K. Kielbassa et al., “Rottlerin, a novel protein kinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 199, no. 1, pp. 93–98, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Martelli, M. Nyåkern, G. Tabellini et al., “Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia,” Leukemia, vol. 20, no. 6, pp. 911–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Nishioka, T. Ikezoe, J. Yang, S. Gery, H. P. Koeffler, and A. Yokoyama, “Inhibition of mammalian target of rapamycin signaling potentiates the effects of all-trans retinoic acid to induce growth arrest and differentiation of human acute myelogenous leukemia cells,” International Journal of Cancer, vol. 125, no. 7, pp. 1710–1720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Tabellini, P. L. Tazzari, R. Bortul et al., “Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias,” British Journal of Haematology, vol. 130, no. 5, pp. 716–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. X. M. Ma and J. Blenis, “Molecular mechanisms of mTOR-mediated translational control,” Nature Reviews Molecular Cell Biology, vol. 10, no. 5, pp. 307–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Casini and P. G. Pelicci, “A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest,” Oncogene, vol. 18, no. 21, pp. 3235–3243, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Yamanaka, X. Y. Zhang, M. Maeda et al., “Essential role of NAT1/p97/DAP5 in embryonic differentiation and the retinoic acid pathway,” The EMBO Journal, vol. 19, no. 20, pp. 5533–5541, 2000. View at Google Scholar · View at Scopus
  56. H. Imataka, H. S. Olsen, and N. Sonenberg, “A new translational regulator with homology to eukaryotic translation initiation factor 4G,” The EMBO Journal, vol. 16, no. 4, pp. 817–825, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Melnick and J. D. Licht, “Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia,” Blood, vol. 93, no. 10, pp. 3167–3215, 1999. View at Google Scholar · View at Scopus
  58. J. Chung, C. J. Kuo, G. R. Crabtree, and J. Blenis, “Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases,” Cell, vol. 69, no. 7, pp. 1227–1236, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. E. A. Chiocca, P. J. A. Davies, and J. P. Stein, “Regulation of tissue transglutaminase gene expression as a molecular model for retinoid effects on proliferation and differentiation,” Journal of Cellular Biochemistry, vol. 39, no. 3, pp. 293–304, 1989. View at Google Scholar · View at Scopus
  60. T. Suzuki, Y. Koyama, H. Ichikawa et al., “1,25-Dihydroxyvitamin D3 suppresses gene expression of eukaryotic translation initiation factor 2 in human promyelocytic leukemia HL-60 cells,” Cell Structure and Function, vol. 30, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Billottet, L. Banerjee, B. Vanhaesebroeck, and A. Khwaja, “Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting ATRA-induced differentiation,” Cancer Research, vol. 69, no. 3, pp. 1027–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. T. A. Lin, X. Kong, T. A. J. Haystead et al., “PHAS-I as a link between mitogen-activated protein kinase and translation initiation,” Science, vol. 266, no. 5185, pp. 653–656, 1994. View at Google Scholar · View at Scopus
  63. A. Pause, G. J. Belsham, A. C. Gingras et al., “Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function,” Nature, vol. 371, no. 6500, pp. 762–767, 1994. View at Publisher · View at Google Scholar · View at Scopus
  64. H. S. Yang, A. P. Jansen, A. A. Komar et al., “The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation,” Molecular and Cellular Biology, vol. 23, no. 1, pp. 26–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Wang and D. Ron, “Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase,” Science, vol. 272, no. 5266, pp. 1347–1349, 1996. View at Google Scholar · View at Scopus