Table of Contents
Leukemia Research and Treatment
Volume 2012, Article ID 861301, 9 pages
http://dx.doi.org/10.1155/2012/861301
Research Article

Mycophenolic Acid Overcomes Imatinib and Nilotinib Resistance of Chronic Myeloid Leukemia Cells by Apoptosis or a Senescent-Like Cell Cycle Arrest

1Laboratoire Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université Bordeaux Ségalen, 146 Rue Léo Saignat Bat TP 4e étage, 33076 Bordeaux, France
2IRSET, EA 4427 SERAIC, Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
3IBGC, UMR CNRS 5095, Université Bordeaux Ségalen, 1 Rue Camille Saint Saëns, 33077 Bordeaux, France

Received 30 September 2011; Accepted 16 November 2011

Academic Editor: Judith E. Karp

Copyright © 2012 Claire Drullion et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Rowley and J. R. Testa, “Chromosome abnormalities in malignant hematologic diseases,” Advances in Cancer Research, vol. 36, no. C, pp. 103–148, 1982. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Groffen, N. Heisterkamp, and K. Stam, “Oncogene activation by chromosomal translocation in chronic myelocytic leukemia,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 51, no. 2, pp. 911–921, 1986. View at Google Scholar · View at Scopus
  3. J. V. Melo, “The molecular biology of chronic myeloid leukaemia,” Leukemia, vol. 10, no. 5, pp. 751–756, 1996. View at Google Scholar · View at Scopus
  4. B. J. Druker, S. Tamura, E. Buchdunger et al., “Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells,” Nature Medicine, vol. 2, no. 5, pp. 561–566, 1996. View at Google Scholar · View at Scopus
  5. F. X. Mahon, M. W. N. Deininger, B. Schultheis et al., “Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance,” Blood, vol. 96, no. 3, pp. 1070–1079, 2000. View at Google Scholar · View at Scopus
  6. F. X. Mahon, S. Hayette, V. Lagarde et al., “Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression,” Cancer Research, vol. 68, no. 23, pp. 9809–9816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. J. Donato, J. Y. Wu, J. Stapley et al., “BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571,” Blood, vol. 101, no. 2, pp. 690–698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ray, Y. Lu, S. H. Kaufmann et al., “Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis,” Journal of Biological Chemistry, vol. 279, no. 34, pp. 35604–35615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Pocaly, V. Lagarde, G. Etienne et al., “Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia,” Leukemia, vol. 21, no. 1, pp. 93–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Guidicelli, B. Chaigne-Delalande, M. S. Dilhuydy et al., “The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells,” PLoS One, vol. 4, no. 5, Article ID e5493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Huo, R. H. Luo, S. A. Metz, and G. Li, “Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells,” Endocrinology, vol. 143, no. 5, pp. 1695–1704, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Floryk and E. Huberman, “Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145,” Cancer Letters, vol. 231, no. 1, pp. 20–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Gu, L. Santiago, and B. S. Mitchell, “Synergy between imatinib and mycophenolic acid in inducing apoptosis in cell lines expressing Bcr-Abl,” Blood, vol. 105, no. 8, pp. 3270–3277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Peñuelas, V. Noé, R. Morales, and C. J. Ciudad, “Sensitization of human erythroleukemia K562 cells resistant to methotrexate by inhibiting IMPDH,” Medical Science Monitor, vol. 11, no. 1, pp. BR6–BR12, 2005. View at Google Scholar · View at Scopus
  15. B. Chaigne-Delalande, G. Guidicelli, L. Couzi, and P. Legembre, “An atypical necrotic signal induced by immunosuppressive and anti-viral agents,” Autophagy, vol. 5, no. 3, pp. 425–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Nagai, Y. Natsumeda, Y. Konno, R. Hoffman, S. Irino, and G. Weber, “Selective up-regulation of type II inosine 5'-monophosphate dehydrogenase messenger RNA expression in human leukemias,” Cancer Research, vol. 51, no. 15, pp. 3886–3890, 1991. View at Google Scholar · View at Scopus
  17. M. Pocaly, V. Lagarde, G. Etienne et al., “Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance,” Proteomics, vol. 8, no. 12, pp. 2394–2406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Priault, E. Hue, F. Marhuenda, P. Pilet, L. Oliver, and F. M. Vallette, “Differential dependence on Beclin 1 for the regulation of pro-survival autophagy by Bcl-2 and Bcl-xL in HCT116 colorectal cancer cells,” PLoS One, vol. 5, no. 1, Article ID e8755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. X. F. Qin, D. S. An, I. S. Y. Chen, and D. Baltimore, “Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 183–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Gioia, C. Leroy, C. Drullion et al., “Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells,” Blood, vol. 118, no. 8, pp. 2211–2221, 2011. View at Publisher · View at Google Scholar
  21. G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hochhaus, S. Kreil, A. Corbin et al., “Roots of clinical resistance to STI-571 cancer therapy,” Science, vol. 293, no. 5538, p. 2163, 2001. View at Google Scholar · View at Scopus
  23. S. M. Graham, H. G. Jørgensen, E. Allan et al., “Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro,” Blood, vol. 99, no. 1, pp. 319–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Hochhaus and P. La Rosée, “Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance,” Leukemia, vol. 18, no. 8, pp. 1321–1331, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. W. N. Deininger and B. J. Druker, “SRCircumventing imatinib resistance,” Cancer Cell, vol. 6, no. 2, pp. 108–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Moosavi, R. Yazdanparast, and A. Lotfi, “GTP induces S-phase cell-cycle arrest and inhibits DNA synthesis in K562 cells but not in normal human peripheral lymphocytes,” Journal of Biochemistry and Molecular Biology, vol. 39, no. 5, pp. 492–501, 2006. View at Google Scholar · View at Scopus
  27. S. Seoane, J. C. Montero, A. Ocaña, and A. Pandiella, “Effect of multikinase inhibitors on caspase-independent cell death and DNA damage in HER2-overexpressing breast cancer cells,” Journal of the National Cancer Institute, vol. 102, no. 18, pp. 1432–1446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Okada, S. Adachi, T. Imai et al., “A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity,” Blood, vol. 103, no. 6, pp. 2299–2307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas et al., “BRAFE600-associated senescence-like cell cycle arrest of human naevi,” Nature, vol. 436, no. 7051, pp. 720–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Oliva, M. C. Caino, A. M. Senderowicz, and M. G. Kazanietz, “S-phase-specific activation of PKCα induces senescence in non-small cell lung cancer cells,” Journal of Biological Chemistry, vol. 283, no. 9, pp. 5466–5476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Boya, R. A. González-Polo, N. Casares et al., “Inhibition of macroautophagy triggers apoptosis,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1025–1040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Mishima, Y. Terui, Y. Mishima et al., “Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors,” Cancer Science, vol. 99, no. 11, pp. 2200–2208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Bellodi, M. R. Lidonnici, A. Hamilton et al., “Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1109–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. J. Young, M. Narita, M. Ferreira et al., “Autophagy mediates the mitotic senescence transition,” Genes and Development, vol. 23, no. 7, pp. 798–803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Scarlatti, R. Maffei, I. Beau, R. Ghidoni, and P. Codogno, “Non-canonical autophagy: an exception or an underestimated form of autophagy?” Autophagy, vol. 4, no. 8, pp. 1083–1085, 2008. View at Google Scholar · View at Scopus
  36. A. Puissant, G. Robert, N. Fenouille et al., “Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation,” Cancer Research, vol. 70, no. 3, pp. 1042–1052, 2010. View at Publisher · View at Google Scholar · View at Scopus