Table of Contents
Leukemia Research and Treatment
Volume 2013, Article ID 275760, 14 pages
http://dx.doi.org/10.1155/2013/275760
Review Article

The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias

Department of Hematology, Oncology and Molecular Medicine, Upper Health Institute, Viale Regina Elena 299, 00161 Rome, Italy

Received 1 February 2013; Revised 30 April 2013; Accepted 14 May 2013

Academic Editor: Monique den Boer

Copyright © 2013 Ugo Testa and Elvira Pelosi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Nakao, S. Yokota, T. Iwai et al., “Internal tandem duplication of the flt3 gene found in acute myeloid leukemia,” Leukemia, vol. 10, no. 12, pp. 1911–1918, 1996. View at Google Scholar · View at Scopus
  2. Y. Yamamoto, H. Kiyoi, Y. Nakano et al., “Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies,” Blood, vol. 97, no. 8, pp. 2434–2439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Reindl, K. Bagrintseva, S. Vempati et al., “Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML,” Blood, vol. 107, no. 9, pp. 3700–3707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Fröhling, C. Scholl, R. L. Levine et al., “Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles,” Cancer Cell, vol. 12, no. 6, pp. 501–513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Mackarehtschian, J. D. Hardin, K. A. Moore, S. Boast, S. P. Goff, and I. R. Lemischka, “Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors,” Immunity, vol. 3, no. 1, pp. 147–161, 1995. View at Google Scholar · View at Scopus
  6. C. Waskow, K. Liu, G. Darrasse-Jèze et al., “The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues,” Nature Immunology, vol. 9, no. 6, pp. 676–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. McKenna, K. L. Stocking, R. E. Miller et al., “Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells,” Blood, vol. 95, no. 11, pp. 3489–3497, 2000. View at Google Scholar · View at Scopus
  8. C. Böiers, N. Buza-Vidas, C. T. Jensen et al., “Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development,” Blood, vol. 115, no. 24, pp. 5061–5068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Gabbianelli, E. Pelosi, E. Montesoro et al., “Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors,” Blood, vol. 86, no. 5, pp. 1661–1670, 1995. View at Google Scholar · View at Scopus
  10. U. Testa, C. Fossati, P. Samoggia et al., “Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors,” Blood, vol. 88, no. 9, pp. 3391–3406, 1996. View at Google Scholar · View at Scopus
  11. S. W. Boyer, A. V. Schroeder, S. Smith-Berdan, and E. C. Forsberg, “All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells,” Cell Stem Cell, vol. 9, no. 1, pp. 64–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Li, A. Chaver, L. Xu et al., “Identification of Flt3+CD150- myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential,” Blood, vol. 118, pp. 2723–2732, 2011. View at Google Scholar
  13. H. Döhner, E. H. Estey, S. Amadori et al., “Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet,” Blood, vol. 115, no. 3, pp. 453–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Mrozek, G. Marcucci, D. Nicolet et al., “Prognostic significance of the European Net standardization system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia,” Journal of Clinical Oncology, vol. 30, pp. 4515–4523, 2012. View at Google Scholar
  15. V. Grossmann, S. Schnittger, A. Kohlmann et al., “A novel hierarchical prognostic model of AML solely based on molecular mutations,” Blood, vol. 120, pp. 2963–2972, 2012. View at Google Scholar
  16. K. Anderson, C. Lutz, F. W. Van Delft et al., “Genetic variegation of clonal architecture and propagating cells in leukaemia,” Nature, vol. 469, no. 7330, pp. 356–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Notta, C. Mullighan, J. Wang et al., “Evolution of human BCR-ABL1 lymphoblastic leukemia,” Nature, vol. 469, pp. 362–367, 2011. View at Google Scholar
  18. L. Ding, T. Ley, D. Larson et al., “Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing,” Nature, vol. 481, pp. 506–510, 2012. View at Google Scholar
  19. S. Wakita, H. Yamaguchi, K. Miyake et al., “Importance of c-kit mutation detection method sensitivity in prognostic analyses of t(8;21)(q22;q22) acute myeloid leukemia,” Leukemia, vol. 25, no. 9, pp. 1423–1432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Bachas, G. J. Schuurhuis, Y. G. Assaraf et al., “The role of minor subpopulation within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse,” Leukemia, vol. 26, pp. 1313–1320, 2012. View at Google Scholar
  21. B. Parkin, P. Ouillette, Y. Li et al., “Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia,” Blood, vol. 121, pp. 369–377, 2013. View at Google Scholar
  22. J. S. Welch, T. J. Ley, D. C. Link et al., “The origin and evolution of mutations in acute myeloid leukemia,” Cell, vol. 150, pp. 264–278, 2012. View at Google Scholar
  23. M. Jan, T. Snyder, R. Corces-Zimmerman, P. Vyas, I. L. Weissman, and S. R. Quake, “Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia,” Science Translational Medicine, vol. 4, no. 149, Article ID 149ra118, 2012. View at Publisher · View at Google Scholar
  24. C. C. Smith, Q. Wang, C. S. Chin et al., “Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukemia,” Nature, vol. 485, pp. 260–263, 2012. View at Google Scholar
  25. C. H. Man, T. K. Fung, C. Ho et al., “Sorafenib treatment of FLT3-ITD+ AML: favorable initial outcome and mechanisms of subsequent non-responsiveness associated with the emergence of a D835 mutation,” Blood, vol. 119, pp. 5133–5143, 2012. View at Google Scholar
  26. L.-Y. Shih, C.-F. Huang, P.-N. Wang et al., “Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia,” Leukemia, vol. 18, no. 3, pp. 466–475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Dosil, S. Wang, and I. R. Lemischka, “Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells,” Molecular and Cellular Biology, vol. 13, no. 10, pp. 6572–6585, 1993. View at Google Scholar · View at Scopus
  28. K. Masson, T. Liu, R. Khan, J. Sun, and L. Rönnstrand, “A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival,” British Journal of Haematology, vol. 146, no. 2, pp. 193–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Zhang and H. E. Broxmeyer, “Flt3 ligand induces tyrosine phosphorylation of Gab1 and Gab2 and their association with Shp-2, Grb2, and PI3 kinase,” Biochemical and Biophysical Research Communications, vol. 277, no. 1, pp. 195–199, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Heiss, K. Masson, C. Sundberg et al., “Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2,” Blood, vol. 108, no. 5, pp. 1542–1550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. U. Kazl, J. Sun, B. Phung, F. Zadjali, A. Flores-Morales, and L. Ronnstrand, “Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3,” The Journal of Biological Chemistry, vol. 287, pp. 36509–36517, 2012. View at Google Scholar
  32. J. L. Rocnik, R. Okabe, J. Yu et al., “Roles of tyrosine 589 and 591 in STAT5 activation and transformation mediated by FLT3-ITD,” Blood, vol. 108, no. 4, pp. 1339–1345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Yoshimoto, T. Miyamoto, S. Jabbarzadeh-Tabrizi et al., “FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation,” Blood, vol. 114, no. 24, pp. 5034–5043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Tam, P. Hahnel, A. Schuler et al., “STAT5 is crucial to maintain leukemic stem cells in acute myelogenousleukemias induced by MOZ-TIF2,” Cancer Research, vol. 73, pp. 373–384, 2012. View at Google Scholar
  35. C. Choudhary, C. Brandts, J. Schwable et al., “Activation mechanisms of STAT5 by oncogenic Flt3-ITD,” Blood, vol. 110, no. 1, pp. 370–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Choudhary, J. V. Olsen, C. Brandts et al., “Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes,” Molecular Cell, vol. 36, no. 2, pp. 326–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Reddy, B. Sargin, C. Choudhary et al., “SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control,” Blood, vol. 120, pp. 1691–1702, 2012. View at Google Scholar
  38. E. C. Obermann, C. Arber, M. Jotterand, A. Tichelli, P. Hirschmann, and A. Tzankov, “Expression of pSTAT5 predicts FLT3 internal tandem duplications in acute myeloid leukemia,” Annals of Hematology, vol. 89, no. 7, pp. 663–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Nelson, S. Walker, M. Xiang et al., “The STAT5 inhibitor pimoride displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations,” Genes & Cancer, vol. 3, pp. 503–511, 2012. View at Google Scholar
  40. H. Leischner, C. Albers, R. Grundler et al., “SRC is a signaling mediator in FLT3-ITD - But not in FLT3-TKD-positive AML,” Blood, vol. 119, no. 17, pp. 4026–4033, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. D. C. Lin, T. Yin, M. Koren-Michowitz et al., “Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3,” Blood, vol. 120, pp. 3310–3317, 2012. View at Google Scholar
  42. R. Godfrey, D. Arora, R. Bauer et al., “Cell transformation by FLT3-ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/PTPRJ,” Blood, vol. 119, pp. 4499–4511, 2012. View at Google Scholar
  43. I. K. Park, A. Mishra, J. Chandler, S. Whitman, G. Marcucci, and M. A. Caligiuri, “Inhibition of the receptor tyrosine kinase Axl impedes activation of the FLT3 internal tandem duplication in acute myeloid leukemia: implications for Axl as a potential therapeutic target,” Blood, vol. 121, no. 11, pp. 2064–2073, 2013. View at Publisher · View at Google Scholar
  44. L. M. Kelly, Q. Liu, J. L. Kutok, I. R. Williams, C. L. Boulton, and D. G. Gilliland, “FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model,” Blood, vol. 99, no. 1, pp. 310–318, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. B. H. Lee, I. R. Williams, E. Anastasiadou et al., “FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model,” Oncogene, vol. 24, no. 53, pp. 7882–7892, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. B. H. Lee, Z. Tothova, R. L. Levine et al., “FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic Myelomonocytic Leukemia,” Cancer Cell, vol. 12, no. 4, pp. 367–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Li, O. Piloto, H. B. Nguyen et al., “Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model,” Blood, vol. 111, no. 7, pp. 3849–3858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Taketani, T. Taki, T. Nakamura et al., “High frequencies of simultaneous FLT3-ITD, WT1 and KIT mutations in hematological malignancies with NUP98-fusion genes,” Leukemia, vol. 24, no. 11, pp. 1975–1977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Lin, C. Slape, Z. Zhang, and P. D. Aplan, “NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia,” Blood, vol. 106, no. 1, pp. 287–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Greenblatt, L. Li, C. Slape et al., “Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model,” Blood, vol. 119, no. 12, pp. 2883–2894, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zhang, X. Yan, G. Sashida et al., “Stress hematopoiesis reveals abnormal control of self-renewal, lineage bias, and myeloid differentiation in MLL partial tandem duplication (MLL-PTD) hematopoietic stem/progenitor cells,” Blood, vol. 120, pp. 1118–1129, 2012. View at Google Scholar
  52. N. Zarko, K. Benot, S. Whitman et al., “Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute Myeloid Leukemias,” Blood, vol. 120, pp. 1130–1136, 2012. View at Google Scholar
  53. N. Kato, J. Kitaura, N. Doki et al., “Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: Lessons from clinical data and BMT models,” Blood, vol. 117, no. 1, pp. 221–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Reczeh, O. Bereshchenko, A. Mead et al., “Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model,” Leukemia, vol. 26, pp. 1527–1536, 2012. View at Google Scholar
  55. J. S. Welch, W. Yuan, and T. J. Ley, “PML-RARA can increase hematopoietic self-renewal without causing a myeloproliferative disease in mice,” Journal of Clinical Investigation, vol. 121, no. 4, pp. 1636–1645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. L. M. Kelly, J. L. Kutok, I. R. Williams et al., “PML/RARα and FLT3-ITD induce an APL-like disease in a mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8283–8288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Agrawal-Singh, S. Koschmieder, S. Gelsing et al., “Pim2 cooperates with PML-RARα to induce acute myeloid leukemia in a bone marrow transplantation model,” Blood, vol. 115, no. 22, pp. 4507–4516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Levis, K. M. Murphy, R. Pham et al., “Internal tandem duplications of the FLT3 gene are present in leukemia stem cells,” Blood, vol. 106, no. 2, pp. 673–680, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Li, O. Piloto, K. Kim et al., “FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells,” British Journal of Haematology, vol. 137, no. 1, pp. 64–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Lumkul, N.-C. Gorin, M. T. Malehorn et al., “Human AML cells in NOD/SCID mice: engraftment potential and gene expression,” Leukemia, vol. 16, no. 9, pp. 1818–1826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. D. J. Pearce, D. Taussig, K. Zibara et al., “AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML,” Blood, vol. 107, no. 3, pp. 1166–1173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Ottone, S. Zaza, M. Divona et al., “Identification of emerging FLT3 ITD-positive clones during clinical remission and kinetics of disease relapse in acute myeloid leukemia with mutated nucleophosmin,” British Journal of Haematology, vol. 161, no. 4, pp. 533–540, 2013. View at Publisher · View at Google Scholar
  63. H. Chu, D. Heiser, L. Li et al., “FLT3-ITD knock-in impairs hematopoietic stem cell quiescence/homeostasis leading to myeloproliferative neoplasm,” Cell Stem Cell, vol. 11, pp. 346–358, 2012. View at Google Scholar
  64. R. Zheng, A. D. Friedman, and D. Small, “Targeted inhibition of FLT3 overcomes the block to myeloid differentiation in 32Dcl3 cells caused by expression of FLT3/ITD mutations,” Blood, vol. 100, no. 12, pp. 4154–4161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Mizuki, J. Schwäble, C. Steur et al., “Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations,” Blood, vol. 101, no. 8, pp. 3164–3173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Zheng, A. D. Friedman, M. Levis, L. Li, E. G. Weir, and D. Small, “Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPα expression,” Blood, vol. 103, no. 5, pp. 1883–1890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Radomska, D. Bassères, R. Zheng et al., “Block of C/EBPalpha function by phosphorylation in acute leukemia with FLT3 activating mutations,” The Journal of Experimental Medicine, vol. 203, pp. 371–381, 2006. View at Google Scholar
  68. H. Radomska, M. Alberich-Jordà, B. Will et al., “Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPalpha,” The Journal of Clinical Investigation, vol. 122, pp. 2955–2966, 2012. View at Google Scholar
  69. J. Schwäble, C. Choudhary, C. Thiede et al., “RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation,” Blood, vol. 105, no. 5, pp. 2107–2114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Perugini, C. H. Kok, A. L. Brown et al., “Repression of Gadd45α by activated FLT3 and GM-CSF receptor mutants contributes to growth, survival and blocked differentiation,” Leukemia, vol. 23, no. 4, pp. 729–738, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Sexauer, A. Perl, X. Yang et al., “Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML,” Blood, vol. 120, pp. 4205–4214, 2012. View at Google Scholar
  72. F. P. S. Santos, D. Jones, W. Qiao et al., “Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia,” Cancer, vol. 117, no. 10, pp. 2145–2155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. J. P. Patel, M. Gönen, M. E. Figueroa et al., “Prognostic relevance of integrated genetic profiling in acute myeloid leukemia,” The New England Journal of Medicine, vol. 366, no. 12, pp. 1079–1089, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Thiede, C. Stendel, B. Mohz et al., “Analysis of FLT3 activating mutations in 979 patients with acute myelogenouc leukemia: association with FAB subtypes and identification of subgroups with poor prognosis,” Blood, vol. 99, no. 12, pp. 4326–4335, 2002. View at Google Scholar
  75. S. Kayser, R. Schlenk, F. Breitenbucher et al., “Prognostic implication of insertion of FLT3 internal tandem duplication in the BETA-1 sheet of the Tyrosine Kinase Domain-1,” ASH Annual Meeting Abstracts, vol. 112, article 2514, 2008. View at Google Scholar
  76. F. Schneider, E. Hoster, M. Unterhalt et al., “The FLT3-ITD mRNA level has a high prognostic impact in NPM1-mutated, but not in NMP1 unmutated, AML with a normal karyotype,” Blood, vol. 119, pp. 4383–4386, 2012. View at Google Scholar
  77. M. Pratcorona, S. Brunet, J. Nomdedu et al., “Favorable outcome of patients with acute myeloid leukemia: relevance to post-remission therapy,” Blood, vol. 121, pp. 2734–2738, 2013. View at Google Scholar
  78. E. Diffner, D. Beck, E. Gudgin et al., “Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia,” Blood, vol. 121, no. 12, pp. 2289–2300, 2013. View at Publisher · View at Google Scholar
  79. A. Dufour, F. Schneider, E. Hoster et al., “Monoallelic CEBPA mutations in normal karyotype acute myeloid leukemia: independent favorable prognostic factor within NPM1 mutated patients,” Annals of Hematology, vol. 91, pp. 1053–1063, 2012. View at Google Scholar
  80. V. Grossman, C. Haferlach, C. Nadarajah et al., “CEBPA double-mutated acute myeloid leukemia harbor concomitant molecular mutations in 76.8% of cases with TET2 and GATA2 alterations impacting prognosis,” British Journal of Haematology, vol. 161, no. 5, pp. 649–658, 2013. View at Publisher · View at Google Scholar
  81. E. Taskesen, L. Bullinger, A. Corbacioglu et al., “Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity,” Blood, vol. 117, no. 8, pp. 2469–2475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. U. Bacher, T. Haferlach, T. Alpermann, W. Kern, S. Schnittger, and C. Haferlach, “Molecular mutations are prognostically relevant in AML with intermediate risk cytogenetics and aberrant karyotype,” Leukemia, vol. 27, pp. 496–500, 2013. View at Google Scholar
  83. R. E. Gale, R. Hills, A. R. Pizzey et al., “Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia,” Blood, vol. 106, no. 12, pp. 3768–3776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. M. C. Chillón, C. Santamaría, R. García-Sanz et al., “Long FLT3 internal tandem duplications and reduced PML-RARα expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients,” Haematologica, vol. 95, no. 5, pp. 745–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Barragán, P. Montesinos, M. Camos et al., “Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy,” Haematologica, vol. 96, no. 10, pp. 1470–1477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Schnittger, U. Bacher, C. Haferlach, W. Kern, T. Alpermann, and T. Haferlach, “Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA,” Haematologica, vol. 96, no. 12, pp. 1799–1807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Gallagher, B. Moser, J. Racevskis et al., “Treatment-influenced associations of PML-RARalpha mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia,” Blood, vol. 120, pp. 2098–2108, 2012. View at Google Scholar
  88. T. J. Ley, L. Ding, M. J. Walter et al., “DNMT3A mutations in acute myeloid leukemia,” The New England Journal of Medicine, vol. 363, no. 25, pp. 2424–2433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. X. Yan, J. Xu, Z. Gu et al., “Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia,” Nature Genetics, vol. 43, no. 4, pp. 309–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Wakita, H. Yamaguchi, I. Omori et al., “Mutations of the epigenetics-modifying genes (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in the de novo acute Myeloid Leukemia,” Leukemia, vol. 27, no. 5, pp. 1044–1052, 2013. View at Publisher · View at Google Scholar
  91. M. Gonen, Z. Sun, M. Figueroa et al., “CD25 expression status improves prognostic risk classification in AML independent of established biomarkers: ECOG phase 3 trial, E1900,” Blood, vol. 120, pp. 2297–2308, 2012. View at Google Scholar
  92. U. Testa, R. Riccioni, S. Militi et al., “Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis,” Blood, vol. 100, no. 8, pp. 2980–2988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Riccioni, D. Diverio, V. Riti et al., “Interleukin (IL)-3/granulocyte macrophage-colony stimulating factor/IL-5 receptor alpha and beta chains are preferentially expressed in acute myeloid leukaemias with mutated FMS-related tyrosine kinase 3 receptor,” British Journal of Haematology, vol. 144, no. 3, pp. 376–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Swords, C. Freeman, and F. Giles, “Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia,” Leukemia, vol. 26, pp. 2176–2185, 2012. View at Google Scholar