Table of Contents
Leukemia Research and Treatment
Volume 2013 (2013), Article ID 705714, 6 pages
http://dx.doi.org/10.1155/2013/705714
Clinical Study

Phase II Study of Bortezomib as a Single Agent in Patients with Previously Untreated or Relapsed/Refractory Acute Myeloid Leukemia Ineligible for Intensive Therapy

Department of Hematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy

Received 16 January 2013; Revised 17 March 2013; Accepted 1 April 2013

Academic Editor: Antonio Cuneo

Copyright © 2013 Chiara Sarlo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. Cheson, J. M. Bennett, K. J. Kopecky et al., “Revised Recommedations of the International Working Group for Diagnosis Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia,” Journal of Clinical Oncology, vol. 21, no. 24, pp. 4642–4649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Ferrara, “Unanswered questions in acute myeloid leukaemia,” Lancet Oncology, vol. 5, no. 7, pp. 443–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Fang, G. Rhyasen, L. Bolanos et al., “Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA,” Blood, vol. 120, pp. 858–867, 2012. View at Google Scholar
  4. T. Caravita, P. de Fabritiis, A. Palumbo, S. Amadori, and M. Boccadoro, “Bortezomib: efficacy comparisons in solid tumors and hematologic malignancies,” Nature Clinical Practice Oncology, vol. 3, no. 7, pp. 374–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Liu, Z. Liu, Z. Xie et al., “Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-κB-dependent DNA methyltransferase activity in acute myeloid leukemia,” Blood, vol. 111, no. 4, pp. 2364–2373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Liu, L. C. Wu, J. Pang et al., “Sp1/NFKappaB/HDAC/miR-29b regulation network in Kit-driven myeloid leukemia,” Cancer Cell, vol. 17, no. 4, pp. 333–347, 2010. View at Google Scholar
  7. J. Cortes, D. Thomas, C. Koller et al., “Phase I study of bortezomib in refractory or relapsed acute leukemias,” Clinical Cancer Research, vol. 10, pp. 3371–3376, 2004. View at Google Scholar
  8. W. Blum, S. Schwind, S. Tarighat et al., “Clinical and pharmacodynamic activity of Bortezomib and decitabine in acute myeloid leukemia,” Blood, no. 25, pp. 6025–6031, 2012. View at Google Scholar
  9. F. Mitelman, Ed., ISCN: An International System For Human Cytogenetic Nomenclature, Karger, Basel, Switzerland, 1995.
  10. N. Mitsiades, C. S. Mitsiades, P. G. Richardson et al., “The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications,” Blood, vol. 101, no. 6, pp. 2377–2380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Liu, L. C. Wu, J. Pang et al., “Sp1/NFKappaB/HDAC/miR-29b regulation network in Kit-driven myeloid leukemia,” Cancer Cell, vol. 17, no. 4, pp. 333–347, 2010. View at Google Scholar
  12. R. J. Bold, S. Virudachalam, and D. J. McConkey, “Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome,” Journal of Surgical Research, vol. 100, no. 1, pp. 11–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. C. Attar, D. J. De Angelo, J. G. Supko et al., “Phase I and pharmacokinetic study of bortezomib in combination with idarubicinand cytarabine in patients with acute myelogenous leukemia,” Clinical Cancer Research, vol. 14, no. 5, pp. 1446–1454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. C. Attar, J. L. Johnson, P. C. Amrein et al., “Bortezomib added to daunorubicin and cytarabine d during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years:CALGB (Alliance) Study 10502,” Journal of Clinical Oncology, vol. 31, no. 7, pp. 923–929, 2013. View at Google Scholar
  15. J. E. Lancet, V. H. Duong, E. F. Winton et al., “A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias,” Clinical Cancer Research, vol. 17, no. 5, pp. 1140–1146, 2011. View at Publisher · View at Google Scholar · View at Scopus