Table of Contents
SRX Mathematics
Volume 2010, Article ID 891982, 4 pages
http://dx.doi.org/10.3814/2010/891982
Research Article

Global Integrable Solution for a Nonlinear Functional Integral Inclusion

1Faculty of Science, Alexandria University, Alexandria, Egypt
2Faculty of Science, Beirut Arab University, Beirut, Lebanon

Received 20 August 2009; Accepted 14 October 2009

Copyright © 2010 A. M. A. El-Sayed and Sh. M. Al-Issa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Banaś and Z. Knap, “Integrable solutions of a functional-integral equation,” Revista Matemática de la Universidad Complutense de Madrid, vol. 2, no. 1, pp. 31–38, 1989. View at Google Scholar
  2. J. Banas and W. G. El-Sayed, Solvability of Functional and Integral Equations in Some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, Poland, 1993.
  3. G. Emmanuele, “About the existence of integrable solutions of a functional-integral equation,” Revista Matemática de la Universidad Complutense de Madrid, vol. 4, no. 1, pp. 65–69, 1991. View at Google Scholar
  4. G. Emmanuele, “Integrable solutions of a functional-integral equation,” Journal of Integral Equations and Applications, vol. 4, no. 1, pp. 89–94, 1992. View at Publisher · View at Google Scholar · View at MathSciNet
  5. A. M. A. El-Sayed, N. Sherif, and I. Abou El-Farag, “A nonlinear operator functional equation of Volterra type,” Applied Mathematics and Computation, vol. 148, no. 3, pp. 665–679, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  6. I. Podlubny and A. M. A. EL-Sayed, On Two Defintions of Fractional Calculus, Slovak Academy of Sciences, Institute of Experimental Physics, Watsonova, Slovakia, 1996.
  7. I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, Calif, USA, 1999.
  8. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993.
  9. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Orders and Some of Their Applications, Nauka i Tekhnika, Minsk, Belarus, 1987.
  10. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.
  11. J. Dungundji and A. Grance, Fixed Piont Theory, Monografie Mathematyczne, PWN, Warsaw, Poland, 1982.
  12. C. Swartz, Measure, Integration and Function Spaces, World Scientific, Singapore, 1994.
  13. A. Bressan and G. Colombo, “Extensions and selections of maps with decomposable values,” Studia Mathematica, vol. 90, no. 1, pp. 69–86, 1988. View at Google Scholar
  14. M. Cichoń, A. M. A. El-Sayed, and A. H. Hussien, “Existence theorems for nonlinear functional integral equations of fractional orders,” Commentationes Mathematicae, vol. 41, pp. 59–67, 2001. View at Google Scholar
  15. M. Cichoń, “Multivalued perturbations of m-accretive differential inclusions in a non-separable Banach space,” Commentationes Mathematicae, vol. 32, pp. 11–17, 1992. View at Google Scholar
  16. D. Repovš and P. V. Semenov, Continuous Selections of Multivalued Mappings, vol. 455 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.