Table of Contents
Metal-Based Drugs
Volume 1 (1994), Issue 1, Pages 41-63

Water-Soluble Ruthenium(III)-Dimethyl Sulfoxide Complexes: Chemical Behaviour and Pharmaceutical Properties

1Department of Chemical Sciences, School of Pharmacy, University of Trieste, Trieste I-34127, Italy
2Institute of Pharmacology, School of Pharmacy, University of Trieste, Trieste I-34127, Italy
3Department of Biomedical Sciences and Human Oncology, University of Bari, Bari I-70124, Italy

Received 2 August 1993; Accepted 14 August 1993

Copyright © 1994 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In this paper we report a review of the results obtained in the last few years by our group in the development of ruthenium(III) complexes characterized by the presence of sulfoxide ligands and endowed with antitumor properties. In particular, we will focus on ruthenates of general formula Na[trans-RuCl4(R1R2SO)(L)], where R1R2SO = dimethylsulfoxide (DMSO) or tetramethylenesulfoxide (TMSO) and L = nitrogen donor ligand. The chemical behavior of these complexes has been studied by means of spectroscopic techniques both in slightly acidic distilled water and in phosphate buffered solution at physiological pH. The influence of biological reductants on the chemical behavior is also described. The antitumor properties have been investigated on a number of experimental tumors. Out of the effects observed, notheworthy appears the capability of the tested ruthenates to control the metastatic dissemination of solid metastasizing tumors. The analysis of the antimetastatic action, made in particular on the MCa mammary carcinoma of CBA mouse, has demonstrated a therapeutic value for these complexes which are able to significantly prolong the survival time of the treated animals. The antimetastatic effect is not attributable to a specific cytotoxicity for metastatic tumor cells although in vitro experiments on pBR322 double stranded DNA has shown that the test ruthenates bind to the macromolecule, causing breaks corresponding to almost all bases, except than thymine, and are able to cause interstrand bonds, depending on the nature of the complex being tested, some of which results active as cisplatin itself.