Table of Contents
Metal-Based Drugs
Volume 7, Issue 4, Pages 169-176

Antitumor Trans Platinum Adducts of GMP and AMP

1Department of Chemistry, University of Bergen, Allegt.41, Bergen N-5007, Norway
2Department of Pharmaceutical Chemistry, University of Bari, Via E. Orabona 4, Bari I-70125, Italy

Received 16 August 2000; Accepted 11 September 2000

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Recently it has been shown that several analogues of the clinically ineffective trans-DDP exhibit antitumor activity comparable to that of cis-DDP. The present paper describes the binding of antitumor trans-[PtCl2(E-iminoether)2] (trans-EE) to guanosinemonophosphate (GMP) and adenosinemonophosphate (AMP). We have used HPLC and H1 and N15 NMR to characterize the different adducts. In the case of a 1:1 mixture of trans-EE and GMP, at an early stage of the reaction, a monofunctional adduct is formed which, subsequently, is partly converted into a monosolvated monofunctional species. After about 70 hours an equilibrium is established between chloro and solvato monofunctional adducts at a ratio of 30/70. In the presence of excess GMP (4:1) the initially formed monofunctional adducts react further to give two bifunctional adducts, one with the iminoether ligands in their original E configurations and the other with the iminoether ligands having one E and the other, Z configurations. The coordination geometry obtained by energy minimization calculations is in qualitative agreement with 2D NMR data.