Table of Contents
Molecular Biology International
Volume 2012, Article ID 196715, 10 pages
http://dx.doi.org/10.1155/2012/196715
Research Article

The SARAH Domain of RASSF1A and Its Tumor Suppressor Function

1AWG Tumor Genetics of the Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
2OncoRay, National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, University of Technology, 06108 Halle, Dresden, Germany
3Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany

Received 16 November 2011; Revised 1 February 2012; Accepted 2 February 2012

Academic Editor: Geoffrey J. Clark

Copyright © 2012 Claudia Dittfeld et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Dammann, C. Li, J. H. Yoon, P. L. Chin, S. Bates, and G. P. Pfeifer, “Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3,” Nature Genetics, vol. 25, no. 3, pp. 315–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Dammann, U. Schagdarsurengin, C. Seidel et al., “The tumor suppressor RASSF1A in human carcinogenesis: an update,” Histology and Histopathology, vol. 20, no. 2, pp. 645–663, 2005. View at Google Scholar · View at Scopus
  3. A. Agathanggelou, W. N. Cooper, and F. Latif, “Role of the Ras-association domain family 1 tumor suppressor gene in human cancers,” Cancer Research, vol. 65, no. 9, pp. 3497–3508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Richter, G. P. Pfeifer, and R. H. Dammann, “The RASSF proteins in cancer; from epigenetic silencing to functional characterization,” Biochimica et Biophysica Acta, vol. 1796, no. 2, pp. 114–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Burbee, E. Forgacs, S. Zöchbauer-Müller et al., “Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression,” Journal of the National Cancer Institute, vol. 93, no. 9, pp. 691–699, 2001. View at Google Scholar · View at Scopus
  6. K. Dreijerink, E. Braga, I. Kuzmin et al., “The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7504–7509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Rong, W. Jin, J. Zhang, M. S. Sheikh, and Y. Huang, “Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest,” Oncogene, vol. 23, no. 50, pp. 8216–8230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Kuzmin, J. W. Gillespie, A. Protopopov et al., “The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells,” Cancer Research, vol. 62, no. 12, pp. 3498–3502, 2002. View at Google Scholar · View at Scopus
  9. S. Tommasi, R. Dammann, Z. Zhang et al., “Tumor susceptibility of Rassf1a knockout mice,” Cancer Research, vol. 65, no. 1, pp. 92–98, 2005. View at Google Scholar · View at Scopus
  10. L. van der Weyden, K. K. Tachibana, M. A. Gonzalez et al., “The RASSF1A isoform of RASSF1 promotes microtubule stability and suppresses tumorigenesis,” Molecular and Cellular Biology, vol. 25, no. 18, pp. 8356–8367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. van der Weyden, M. J. Arends, O. M. Dovey et al., “Loss of Rassf1a cooperates with ApcMin to accelerate intestinal tumourigenesis,” Oncogene, vol. 27, no. 32, pp. 4503–4508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Vos, A. Martinez, C. Elam et al., “A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability,” Cancer Research, vol. 64, no. 12, pp. 4244–4250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dallol, A. Agathanggelou, S. L. Fenton et al., “RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics,” Cancer Research, vol. 64, no. 12, pp. 4112–4116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Liu, S. Tommasi, D. H. Lee, R. Dammann, and G. P. Pfeifer, “Control of microtubule stability by the RASSF1A tumor suppressor,” Oncogene, vol. 22, no. 50, pp. 8125–8136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Richter, U. Schagdarsurengin, M. Rastetter, K. Steinmann, and R. H. Dammann, “Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function,” European Journal of Cancer, vol. 46, no. 16, pp. 2986–2995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Praskova, A. Khoklatchev, S. Ortiz-Vega, and J. Avruch, “Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras,” Biochemical Journal, vol. 381, no. 2, pp. 453–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ortiz-Vega, A. Khokhlatchev, M. Nedwidek et al., “The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1,” Oncogene, vol. 21, no. 9, pp. 1381–1390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Khokhlatchev, S. Rabizadeh, R. Xavier et al., “Identification of a novel Ras-regulated proapoptotic pathway,” Current Biology, vol. 12, no. 4, pp. 253–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. J. Oh, K. K. Lee, S. J. Song et al., “Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis,” Cancer Research, vol. 66, no. 5, pp. 2562–2569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Baksh, S. Tommasi, S. Fenton et al., “The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to bax conformational change and cell death,” Molecular Cell, vol. 18, no. 6, pp. 637–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. D. Vos, A. Dallol, K. Eckfeld et al., “The RASSF1A tumor suppressor activates bax via MOAP-1,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 4557–4563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. S. Song, S. J. Song, S. Y. Kim, H. J. Oh, and D. S. Lim, “The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex,” EMBO Journal, vol. 27, no. 13, pp. 1863–1874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Song, S. J. Song, N. G. Ayad et al., “The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex,” Nature Cell Biology, vol. 6, no. 2, pp. 129–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Song, M. S. Song, S. J. Kim et al., “Aurora a regulates prometaphase progression by inhibiting the ability of RASSF1A to suppress APC-Cdc20 activity,” Cancer Research, vol. 69, no. 6, pp. 2314–2323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Liu, K. Baier, R. Dammann, and G. P. Pfeifer, “The tumor suppressor RASSF1A does not interact with Cdc20, an activator of the anaphase-promoting complex,” Cell Cycle, vol. 6, no. 13, pp. 1663–1665, 2007. View at Google Scholar · View at Scopus
  26. H. Scheel and K. Hofmann, “A novel interaction motif, SARAH, connects three classes of tumor suppressor,” Current Biology, vol. 13, no. 23, pp. R899–R900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Tapon, K. F. Harvey, D. W. Bell et al., “salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines,” Cell, vol. 110, no. 4, pp. 467–478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Wu, J. Huang, J. Dong, and D. Pan, “hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts,” Cell, vol. 114, no. 4, pp. 445–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, “The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis,” Cell, vol. 114, no. 4, pp. 457–467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. B. A. Hay and M. Guo, “Coupling cell growth, proliferation, and death: hippo weighs in,” Developmental Cell, vol. 5, no. 3, pp. 361–363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Polesello, S. Huelsmann, N. Brown, and N. Tapon, “The drosophila RASSF homolog antagonizes the hippo pathway,” Current Biology, vol. 16, no. 24, pp. 2459–2465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Avruch, M. Praskova, S. Ortiz-Vega, M. Liu, and X. F. Zhang, “Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases,” Methods in Enzymology, vol. 407, pp. 290–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. K. Lee, T. Ohyama, N. Yajima, S. Tsubuki, and S. Yonehara, “MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation,” Journal of Biological Chemistry, vol. 276, no. 22, pp. 19276–19285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Ura, N. Masuyama, J. D. Graves, and Y. Gotoh, “Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10148–10153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. W. L. Cheung, K. Ajiro, K. Samejima et al., “Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase,” Cell, vol. 113, no. 4, pp. 507–517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. H. Ahn, W. L. Cheung, J. Y. Hsu, R. L. Diaz, M. M. Smith, and C. D. Allis, “Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae,” Cell, vol. 120, no. 1, pp. 25–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Ura, H. Nishina, Y. Gotoh, and T. Katada, “Activation of the c-Jun N-terminal kinase pathway by MST1 is essential and sufficient for the induction of chromatin condensation during apoptosis,” Molecular and Cellular Biology, vol. 27, no. 15, pp. 5514–5522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Guo, S. Tommasi, L. Liu, J. K. Yee, R. Dammann, and G. Pfeifer, “RASSF1A is part of a complex similar to the drosophila hippo/salvador/lats tumor-suppressor network,” Current Biology, vol. 17, no. 8, pp. 700–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Guo, X. Zhang, and G. P. Pfeifer, “The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2,” Journal of Biological Chemistry, vol. 286, no. 8, pp. 6253–6261, 2011. View at Publisher · View at Google Scholar
  40. D. Matallanas, D. Romano, K. Yee et al., “RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein,” Molecular Cell, vol. 27, no. 6, pp. 962–975, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Oka, V. Mazack, and M. Sudol, “Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP),” Journal of Biological Chemistry, vol. 283, no. 41, pp. 27534–27546, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Wen, F. Zhu, J. Zhang et al., “MST1 promotes apoptosis through phosphorylation of histone H2AX,” Journal of Biological Chemistry, vol. 285, no. 50, pp. 39108–39116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. K. Lehtinen, Z. Yuan, P. R. Boag et al., “A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span,” Cell, vol. 125, no. 5, pp. 987–1001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. B. You, G. Yan, Z. Zhang et al., “Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1,” Biochemical Journal, vol. 418, no. 1, pp. 93–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Schagdarsurengin, A. M. Richter, J. Hornung, C. Lange, K. Steinmann, and R. H. Dammann, “Frequent epigenetic inactivation of RASSF2 in thyroid cancer and functional consequences,” Molecular Cancer, vol. 9, article 264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. D. Graves, Y. Gotoh, K. E. Draves et al., “Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1,” EMBO Journal, vol. 17, no. 8, pp. 2224–2234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. C. L. Creasy and J. Chernoff, “Cloning and characterization of a human protein kinase with homology to Ste20,” Journal of Biological Chemistry, vol. 270, no. 37, pp. 21695–21700, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Liu, A. Vo, and W. L. McKeehan, “Specificity of the methylation-suppressed A isoform of candidate tumor suppressor RASSF1 for microtubule hyperstabilization is determined by cell death inducer C19ORF5,” Cancer Research, vol. 65, no. 5, pp. 1830–1838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Liu, A. Vo, G. Liu, and W. L. McKeehan, “Novel complex integrating mitochondria and the microtubular cytoskeleton with chromosome remodeling and tumor suppressor RASSF1 deduced by in silico homology analysis, interaction cloning in yeast, and colocalization in cultured cells,” In Vitro Cellular and Developmental Biology, vol. 38, no. 10, pp. 582–594, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Donninger, N. Allen, A. Henson et al., “Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions,” Journal of Biological Chemistry, vol. 286, no. 21, pp. 18483–18491, 2011. View at Publisher · View at Google Scholar
  51. A. Agathanggelou, I. Bièche, J. Ahmed-Choudhury et al., “Identification of novel gene expression targets for the ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma,” Cancer Research, vol. 63, no. 17, pp. 5344–5351, 2003. View at Google Scholar · View at Scopus
  52. A. Moshnikova, J. Frye, J. W. Shay, J. D. Minna, and A. V. Khokhlatchev, “The growth and tumor suppressor NORE1A is a cytoskeletal protein that suppresses growth by inhibition of the ERK pathway,” Journal of Biological Chemistry, vol. 281, no. 12, pp. 8143–8152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. S. S. Min, S. C. Jin, J. S. Su, T. H. Yang, H. Lee, and D. S. Lim, “The centrosomal protein RAS association domain family protein 1A (RASSF1A)-binding protein 1 regulates mitotic progression by recruiting RASSF1A to spindle poles,” Journal of Biological Chemistry, vol. 280, no. 5, pp. 3920–3927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Rong, L. Y. Jiang, M. S. Sheikh, and Y. Huang, “Mitotic kinase Aurora-A phosphorylates RASSF1A and modulates RASSF1A-mediated microtubule interaction and M-phase cell cycle regulation,” Oncogene, vol. 26, no. 55, pp. 7700–7708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Dallol, W. N. Cooper, F. Al-Mulla, A. Agathanggelou, E. R. Maher, and F. Latif, “Depletion of the Ras association domain family 1, isoform A-associated novel microtubule-associated protein, C19ORF5/MAP1S, causes mitotic abnormalities,” Cancer Research, vol. 67, no. 2, pp. 492–500, 2007. View at Publisher · View at Google Scholar · View at Scopus