Table of Contents
Molecular Biology International
Volume 2012 (2012), Article ID 426840, 6 pages
http://dx.doi.org/10.1155/2012/426840
Review Article

TRIM5 and the Regulation of HIV-1 Infectivity

Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland

Received 27 February 2012; Accepted 8 April 2012

Academic Editor: Abraham Brass

Copyright © 2012 Jeremy Luban. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Barré-Sinoussi, J. C. Chermann, F. Rey et al., “Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS),” Science, vol. 220, pp. 868–871, 1983. View at Google Scholar · View at Scopus
  2. J. C.-H. Chen, J. Krucinski, L. J. W. Miercke et al., “Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8233–8238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. E. Kim, C. T. Baker, M. D. Dwyer et al., “Crystal structure of HIV-1 protease in complex with VX-478, a potent and orally bioavailable inhibitor of the enzyme,” Journal of the American Chemical Society, vol. 117, no. 3, pp. 1181–1182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. S. G. Sarafianos, K. Das, C. Tantillo et al., “Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA,” EMBO Journal, vol. 20, no. 6, pp. 1449–1461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. G. Turner and M. F. Summers, “Structural biology of HIV,” Journal of Molecular Biology, vol. 285, no. 1, pp. 1–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Hütter, D. Nowak, M. Mossner et al., “Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation,” The New England Journal of Medicine, vol. 360, no. 7, pp. 692–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Rerks-Ngarm, P. Pitisuttithum, S. Nitayaphan et al., “Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand,” The New England Journal of Medicine, vol. 361, no. 23, pp. 2209–2220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Cherepanov, G. Maertens, P. Proost et al., “HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 372–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Luban, K. L. Bossolt, E. K. Franke, G. V. Kalpana, and S. P. Goff, “Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B,” Cell, vol. 73, no. 6, pp. 1067–1078, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Christ, A. Voet, A. Marchand et al., “Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication,” Nature Chemical Biology, vol. 6, no. 6, pp. 442–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. K. Franke and J. Luban, “Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction,” Virology, vol. 222, no. 1, pp. 279–282, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Thali, A. Bukovsky, E. Kondo et al., “Functional association of cyclophilin A with HIV-1 virions,” Nature, vol. 372, no. 6504, pp. 363–365, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Gao and S. P. Goff, “Somatic cell mutants resistant to retrovirus replication: intracellular blocks during the early stages of infection,” Molecular Biology of the Cell, vol. 10, no. 6, pp. 1705–1717, 1999. View at Google Scholar · View at Scopus
  14. G. Gao, X. Guo, and S. P. Goff, “Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein,” Science, vol. 297, no. 5587, pp. 1703–1706, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Lee, Z. Ambrose, T. D. Martin et al., “Flexible Use of Nuclear Import Pathways by HIV-1,” Cell Host and Microbe, vol. 7, no. 3, pp. 221–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. T. Valente, G. M. Gilmartin, K. Venkatarama, G. Arriagada, and S. P. Goff, “HIV-1 mRNA 3′ end processing is distinctively regulated by eIF3f, CDK11, and splice factor 9G8,” Molecular Cell, vol. 36, no. 2, pp. 279–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Brass, D. M. Dykxhoorn, Y. Benita et al., “Identification of host proteins required for HIV infection through a functional genomic screen,” Science, vol. 319, no. 5865, pp. 921–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. D. Bushman, N. Malani, J. Fernandes et al., “Host cell factors in HIV replication: meta-analysis of genome-wide studies,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. König, Y. Zhou, D. Elleder et al., “Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication,” Cell, vol. 135, no. 1, pp. 49–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. L. Yeung, L. Houzet, V. S. R. K. Yedavalli, and K.-T. Jeang, “A genome-wide short hairpin RNA screening of Jurkat T-cells for human proteins contributing to productive HIV-1 replication,” Journal of Biological Chemistry, vol. 284, no. 29, pp. 19463–19473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhou, M. Xu, Q. Huang et al., “Genome-scale RNAi screen for host factors required for HIV replication,” Cell Host and Microbe, vol. 4, no. 5, pp. 495–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Christ, W. Thys, J. De Rijck et al., “Transportin-SR2 Imports HIV into the nucleus,” Current Biology, vol. 18, no. 16, pp. 1192–1202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. De Iaco and J. Luban, “Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus,” Retrovirology, vol. 8, article 98, 2011. View at Google Scholar
  24. L. Krishnan, K. A. Matreyek, I. Oztop et al., “The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase,” Journal of Virology, vol. 84, no. 1, pp. 397–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley, and A. Fassati, “Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration,” PLoS Pathogens, vol. 7, Article ID e1002194.
  26. K. Strebel, J. Luban, and K.-T. Jeang, “Human cellular restriction factors that target HIV-1 replication,” BMC Medicine, vol. 7, article 48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Sawyer, M. Emerman, and H. S. Malik, “Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G,” PLoS Biology, vol. 2, no. 9, Article ID E275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. L. Sawyer, L. I. Wu, M. Emerman, and H. S. Malik, “Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2832–2837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Best, P. L. Tissier, G. Towers, and J. P. Stoye, “Positional cloning of the mouse retrovirus restriction gene Fv1,” Nature, vol. 382, no. 6594, pp. 826–829, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Pincus, W. P. Rowe, and F. Lilly, “A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to friend murine leukemia virus,” Journal of Experimental Medicine, vol. 133, no. 6, pp. 1234–1241, 1971. View at Google Scholar · View at Scopus
  31. E. K. Franke, H. E. H. Yuan, and J. Luban, “Specific incorporation of cyclophilin A into HIV-1 virions,” Nature, vol. 372, no. 6504, pp. 359–362, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Luban, “Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection,” Journal of Virology, vol. 81, no. 3, pp. 1054–1061, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Yuan, A. K. Kar, and J. Sodroski, “Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A,” Journal of Virology, vol. 83, no. 21, pp. 10951–10962, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Luban, “Absconding with the chaperone: essential cyclophilin-gag interaction in HIV-1 virions,” Cell, vol. 87, no. 7, pp. 1157–1159, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Qi, R. Yang, and C. Aiken, “Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells,” Journal of Virology, vol. 82, no. 24, pp. 12001–12008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Song and C. Aiken, “Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant,” Journal of Virology, vol. 81, no. 21, pp. 11946–11956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Lee, A. Mulky, W. Yuen et al., “HIV-1 capsid targeting domain of cleavage and polyadenylation specificity factor 6,” Journal of Virology, vol. 86, no. 7, pp. 3851–3860, 2012. View at Google Scholar
  38. D. M. Sayah, E. Sokolskaja, L. Berthoux, and J. Luban, “Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1,” Nature, vol. 430, no. 6999, pp. 569–573, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Brennan, Y. Kozyrev, and S.-L. Hu, “TRIMCyp expression in old world primates macaca nemestrina and macaca fascicularis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3569–3574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. M. Newman, L. Hall, A. Kirmaier et al., “Evolution of a TRIM5-CypA splice isoform in old world monkeys,” PLoS Pathogens, vol. 4, no. 2, Article ID e1000003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Virgen, Z. Kratovac, P. D. Bieniasz, and T. Hatziioannou, “Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3563–3568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Wilson, B. L. J. Webb, L. M. J. Ylinen, E. Verschoor, J. L. Heeney, and G. J. Towers, “Independent evolution of an antiviral TRIMCyp in rhesus macaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3557–3562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Schaller, K. E. Ocwieja, J. Rasaiyaah et al., “HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency,” PLoS Pathogens, vol. 7, Article ID e1002439, 2011. View at Google Scholar
  44. J. Balzarini, E. De Clercq, and K. Uberla, “SIV/HIV-1 hybrid virus expressing the reverse transcriptase gene of HIV-1 remains sensitive to HIV-1-specific reverse transcriptase inhibitors after passage in rhesus macaques,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 15, no. 1, pp. 1–4, 1997. View at Google Scholar · View at Scopus
  45. S. Himathongkham and P. A. Luciw, “Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells,” Virology, vol. 219, no. 2, pp. 485–488, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Hofmann, D. Schubert, J. LaBonte et al., “Species-specific, postentry barriers to primate immunodeficiency virus infection,” Journal of Virology, vol. 73, no. 12, pp. 10020–10028, 1999. View at Google Scholar · View at Scopus
  47. J. Li, C. I. Lord, W. Haseltine, N. L. Letvin, and J. Sodroski, “Infection of cynomolgus monkeys with a chimeric HIV-1/SIV(mac) virus that expresses the HIV-1 envelope glycoproteins,” Journal of Acquired Immune Deficiency Syndromes, vol. 5, no. 7, pp. 639–646, 1992. View at Google Scholar · View at Scopus
  48. R. Shibata, M. Kawamura, H. Sakai, M. Hayami, A. Ishimoto, and A. Adachi, “Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells,” Journal of Virology, vol. 65, no. 7, pp. 3514–3520, 1991. View at Google Scholar · View at Scopus
  49. C. Besnier, Y. Takeuchi, and G. Towers, “Restriction of lentivirus in monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11920–11925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Cowan, T. Hatziioannou, T. Cunningham, M. A. Muesing, H. G. Gottlinger, and P. D. Bieniasz, “Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11914–11919, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Münk, S. M. Brandt, G. Lucero, and N. R. Landau, “A dominant block to HIV-1 replication at reverse transcription in simian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13843–13848, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier, and J. Sodroski, “The cytoplasmic body component TRIM5α restricts HIV-1 infection in old world monkeys,” Nature, vol. 427, no. 6977, pp. 848–853, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Nisole, C. Lynch, J. P. Stoye, and M. W. Yap, “A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13324–13328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Stremlau, M. Perron, S. Welikala, and J. Sodroski, “Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction,” Journal of Virology, vol. 79, no. 5, pp. 3139–3145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. W. Yap, S. Nisole, and J. P. Stoye, “A single amino acid change in the SPRY domain of human Trim5α leads to HIV-1 restriction,” Current Biology, vol. 15, no. 1, pp. 73–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Battivelli, D. Lecossier, S. Matsuoka, J. Migraine, F. Clavel, and A. J. Hance, “Strain-specific differences in the impact of human TRIM5α, different TRIM5α alleles, and the inhibition of capsid-cyclophilin a interactions on the infectivity of HIV-1,” Journal of Virology, vol. 84, no. 21, pp. 11010–11019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Battivelli, J. Migraine, D. Lecossier, P. Yeni, F. Clavel, and A. J. Hance, “Gag cytotoxic T lymphocyte escape mutations can increase sensitivity of HIV-1 to human TRIM5alpha, linking intrinsic and acquired immunity,” Journal of Virology, vol. 85, pp. 11846–11854, 2011. View at Google Scholar
  58. S. Sebastian and J. Luban, “TRIM5α selectively binds a restriction-sensitive retroviral capsid,” Retrovirology, vol. 2, article 40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Stremlau, M. Perron, M. Lee et al., “Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5514–5519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. B. K. Ganser-Pornillos, V. Chandrasekaran, O. Pornillos, J. G. Sodroski, W. I. Sundquist, and M. Yeager, “Hexagonal assembly of a restricting TRIM5alpha protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 2, pp. 534–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. I.-J. L. Byeon, X. Meng, J. Jung et al., “Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function,” Cell, vol. 139, no. 4, pp. 780–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. O. Pornillos, B. K. Ganser-Pornillos, B. N. Kelly et al., “X-ray structures of the hexameric building block of the hiv capsid,” Cell, vol. 137, no. 7, pp. 1282–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Pertel, S. Hausmann, D. Morger et al., “TRIM5 is an innate immune sensor for the retrovirus capsid lattice,” Nature, vol. 472, no. 7343, pp. 361–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Zhao, D. Ke, T. Vu et al., “Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces,” PLoS Pathogens, vol. 7, no. 3, Article ID e1002009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Arriagada, L. N. Muntean, and S. P. Goff, “SUMO-interacting motifs of human TRIM5α are important for antiviral activity,” PLoS Pathogens, vol. 7, no. 4, Article ID e1002019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Han, D. I. Lou, and S. L. Sawyer, “Identification of a genomic reservoir for new trim genes in primate genomes,” PLoS Genetics, vol. 7, Article ID e1002388.
  67. F. Diaz-Griffero, X.-R. Qin, F. Hayashi et al., “A B-box 2 surface patch important for TRIM5α self-association, capsid binding avidity, and retrovirus restriction,” Journal of Virology, vol. 83, no. 20, pp. 10737–10751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Li and J. Sodroski, “The TRIM5α B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association,” Journal of Virology, vol. 82, no. 23, pp. 11495–11502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Xu, L. Yang, P. K. Moitra et al., “BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ,” Experimental Cell Research, vol. 288, no. 1, pp. 84–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Lienlaf, F. Hayashi, F. Di Nunzio et al., “Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha,” Journal of Virology, vol. 85, pp. 8725–8737, 2011. View at Google Scholar
  71. F. Diaz-Griffero, X. Li, H. Javanbakht et al., “Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5,” Virology, vol. 349, no. 2, pp. 300–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. J. Rold and C. Aiken, “Proteasomal degradation of TRIM5α during retrovirus restriction,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Lukic, S. Hausmann, S. Sebastian et al., “TRIM5alpha associates with proteasomal subunits in cells while in complex with HIV-1 virions,” Retrovirology, vol. 8, article 93, 2011. View at Google Scholar
  74. C. O'Connor, T. Pertel, S. Gray et al., “p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5α,” Journal of Virology, vol. 84, no. 12, pp. 5997–6006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Berthoux, S. Sebastian, E. Sokolskaja, and J. Luban, “Lv1 inhibition of human immunodeficiency virus type 1 is counteracted by factors that stimulate synthesis or nuclear translocation of viral cDNA,” Journal of Virology, vol. 78, no. 21, pp. 11739–11750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Roa, F. Hayashi, Y. Yang et al., “Ring domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating,” Journal of Virology, vol. 86, pp. 1717–1727, 2012. View at Google Scholar
  77. X. Wu, J. L. Anderson, E. M. Campbell, A. M. Joseph, and T. J. Hope, “Proteasome inhibitors uncouple rhesus TRIM5α restriction of HIV-1 reverse transcription and infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 19, pp. 7465–7470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Allers, G. Hütter, J. Hofmann et al., “Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation,” Blood, vol. 117, no. 10, pp. 2791–2799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Holt, J. Wang, K. Kim et al., “Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo,” Nature Biotechnology, vol. 28, no. 8, pp. 839–847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. Neagu, P. Ziegler, T. Pertel et al., “Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components,” Journal of Clinical Investigation, vol. 119, no. 10, pp. 3035–3047, 2009. View at Publisher · View at Google Scholar · View at Scopus