Table of Contents
Molecular Biology International
Volume 2012, Article ID 625983, 8 pages
http://dx.doi.org/10.1155/2012/625983
Review Article

The Impact of Macrophage Nucleotide Pools on HIV-1 Reverse Transcription, Viral Replication, and the Development of Novel Antiviral Agents

1Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30022, USA
2Veterans Affairs Medical Center, Atlanta, GA 30033, USA
3Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA

Received 5 March 2012; Accepted 23 April 2012

Academic Editor: Gilda Tachedjian

Copyright © 2012 Christina Gavegnano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Macrophages are ubiquitous and represent a significant viral reservoir for HIV-1. Macrophages are nondividing, terminally differentiated cells, which have a unique cellular microenvironment relative to actively dividing T lymphocytes, all of which can impact HIV-1 infection/replication, design of inhibitors targeting viral replication in these cells, emergence of mutations within the HIV-1 genome, and disease progression. Scarce dNTPs drive rNTP incorporation into the proviral DNA in macrophages but not lymphocytes. Furthermore, the efficacy of a ribose-based inhibitor that potently inhibits HIV-1 replication in macrophages, has prompted a reconsideration of the previously accepted dogma that 2′-deoxy-based inhibitors demonstrate effective inhibition of HIV-1 replication. Additionally, higher levels of dUTP and rNTP incorporation in macrophages, and lack of repair mechanisms relative to lymphocytes, provide a further mechanistic understanding required to develop targeted inhibition of viral replication in macrophages. Together, the concentrations of dNTPs and rNTPs within macrophages comprise a distinctive cellular environment that directly impacts HIV-1 replication in macrophages and provides unique insight into novel therapeutic mechanisms that could be exploited to eliminate virus from these cells.