Table of Contents
Molecular Biology International
Volume 2012, Article ID 910707, 7 pages
http://dx.doi.org/10.1155/2012/910707
Research Article

Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

1Department of Mechanical Engineering Mechanics, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton, MI 49931, USA
2Multi-Scale Technologies Institute, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton, MI 49931, USA
3WMRD, US Army Research Laboratory, 4600 Deercreek Loop, Aberdeen Proving Ground, Adelphi, MD 21005, USA
4Department of Biological Sciences, Michigan Technological University, 815 RL Smith, 1400 Townsend Drive, Houghton, MI 49931, USA
5SEDD, US Army Research Laboratory, AMSRD-ARL-SE-EM, 2800 Powder Mill Road, Adelphi, MD 20783, USA

Received 23 March 2012; Accepted 2 May 2012

Academic Editor: E. E. Strehler

Copyright © 2012 Mark H. Griep et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Alivisatos, “The use of nanocrystals in biological detection,” Nature Biotechnology, vol. 22, no. 1, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, no. 5329, pp. 1078–1081, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H. G. Löhmannsröben, and N. Hildebrandt, “Quantum dot biosensors for ultrasensitive multiplexed diagnostic,” Angewandte Chemies, vol. 49, no. 8, pp. 1396–1401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science, vol. 283, no. 5408, pp. 1676–1683, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hasobe, S. Fukuzumi, and P. V. Kamat, “Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes. J- And H-aggregates to nanorods,” Journal of the American Chemical Society, vol. 127, no. 34, pp. 11884–11885, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. W. Wang, G. K. Knopf, and A. S. Bassi, “Photoelectric properties of a detector based on dried bacteriorhodopsin film,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1309–1319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-A. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies—immobilization, properties, and applications,” Advanced Materials, vol. 11, no. 6, pp. 435–446, 1999. View at Publisher · View at Google Scholar
  8. D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature, vol. 233, no. 39, pp. 149–152, 1971. View at Google Scholar · View at Scopus
  9. U. Haupts, J. Tittor, and D. Oesterhelt, “Closing in on bacteriorhodopsin: progress in understanding the molecule,” Annual Review of Biophysics and Biomolecular Structure, vol. 28, pp. 367–399, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. B. Hwang and W. Stoeckenius, “Purple membrane vesicles: morphology and proton translocation,” Journal of Membrane Biology, vol. 33, no. 3-4, pp. 325–350, 1977. View at Google Scholar · View at Scopus
  11. N. A. Hampp, “Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material,” Applied Microbiology and Biotechnology, vol. 53, no. 6, pp. 633–639, 2000. View at Google Scholar · View at Scopus
  12. T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science, vol. 255, no. 5042, pp. 342–344, 1992. View at Google Scholar · View at Scopus
  13. J. Wang, S.-K. Yoo, L. Song, and M. A. El-Sayed, “Molecular mechanism of the differential photoelectric response of bacteriorhodopsin,” Journal of Physical Chemistry B, vol. 101, no. 17, pp. 3420–3423, 1997. View at Google Scholar · View at Scopus
  14. P. Bertoncello, D. Nicolini, C. Paternolli, V. Bavastrello, and C. Nicolini, “Bacteriorhodopsin-based Langmuir-Schaefer films for solar energy capture,” IEEE Transactions on Nanobioscience, vol. 2, no. 2, pp. 124–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Thavasi, T. Lazarova, S. Filipek et al., “Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 3, pp. 1679–1687, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Koch, A. S. Lipton, S. Filipek, and V. Renugopalakrishnan, “Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts—a DFT investigation: relevance to Renu-Seeram bio solar cell,” Journal of Molecular Modeling, vol. 17, no. 6, pp. 1467–1472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Renugopalakrishnan, K. Khizroev, A. Anand, P. Pingzuo, and L. Lindvold, “Future memory storage technology: protein-based memory devices may facilitate surpassing Moore's law,” IEEE Transactions on Magnetics, vol. 43, no. 2, pp. 773–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. M. Jovin, “Quantum dots finally come of age,” Nature Biotechnology, vol. 21, no. 1, pp. 32–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Gerion, F. Pinaud, S. C. Williams et al., “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8861–8871, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Förster, “10th spiers memorial lecture. Transfer mechanisms of electronic excitation,” Discussions of the Faraday Society, vol. 27, pp. 7–17, 1959. View at Publisher · View at Google Scholar · View at Scopus
  21. I. L. Medintz, J. H. Konnert, A. R. Clapp et al., “A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9612–9617, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Dennis and G. Bao, “Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes,” Nano Letters, vol. 8, no. 5, pp. 1439–1445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 301–310, 2004. View at Google Scholar · View at Scopus
  24. A. Polozova and B. J. Litman, “Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains,” Biophysical Journal, vol. 79, no. 5, pp. 2632–2643, 2000. View at Google Scholar · View at Scopus
  25. M. Rehorek, N. A. Dencher, and M. P. Heyn, “Fluorescence energy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles,” Biophysical Journal, vol. 43, no. 1, pp. 39–45, 1983. View at Google Scholar · View at Scopus
  26. F. Dumas, M. M. Sperotto, M. C. Lebrun, J. F. Tocanne, and O. G. Mouritsen, “Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers,” Biophysical Journal, vol. 73, no. 4, pp. 1940–1953, 1997. View at Google Scholar · View at Scopus
  27. M. H. Griep, K. Walczak, E. Winder, D. R. Lueking, and C. R. Friedrich, “An integrated bionanosensing method for airborne toxin detection,” in Nanobiotronics, vol. 6646, p. 664603, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Rakovich, (ed Serpenguzel Ali) 736620 (SPIE).
  29. M. Griep, E. Winder, D. Lueking, C. Friedrich, G. Mallick, and S. Kama, “Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 9, pp. 6029–6035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. H. Griep, K. A. Walczak, E. M. Winder, D. R. Lueking, and C. R. Friedrich, “Quantum dot enhancement of bacteriorhodopsin-based electrodes,” Biosensors and Bioelectronics, vol. 25, no. 6, pp. 1493–1497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski, and F. R. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science, vol. 243, no. 4887, pp. 85–88, 1989. View at Google Scholar · View at Scopus
  32. E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3270–3271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–1292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. A. Darst, M. Ahlers, P. H. Meller et al., “Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules,” Biophysical Journal, vol. 59, no. 2, pp. 387–396, 1991. View at Google Scholar · View at Scopus
  35. T. J. Huang and J. R. Waldeisen, “Biologically inspired energy: harnessing molecular functionality towards nanosystemic design,” Nanomedicine, vol. 1, pp. 369–372, 2006. View at Google Scholar
  36. T. Su, S. Zhong, Y. Zhang, and K. S. Hu, “Asymmetric distribution of biotin labeling on the purple membrane,” Journal of Photochemistry and Photobiology B, vol. 92, no. 2, pp. 123–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Z. Lee, G. W. Shu, J. S. Wang et al., “Recombination dynamics of luminescence in colloidal CdSe/ZnS quantum dots,” Nanotechnology, vol. 16, no. 9, pp. 1517–1521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, “Surface-related emission in highly luminescent CdSe quantum dots,” Nano Letters, vol. 3, no. 8, pp. 1103–1106, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Halpert, J. R. Tischler, G. Nair et al., “Electrostatic formation of quantum dot/J-aggregate FRET pairs in solution,” Journal of Physical Chemistry C, vol. 113, no. 23, pp. 9986–9992, 2009. View at Publisher · View at Google Scholar · View at Scopus