Table of Contents
Molecular Biology International
Volume 2013 (2013), Article ID 587680, 7 pages
http://dx.doi.org/10.1155/2013/587680
Research Article

GAPDH Pseudogenes and the Quantification of Feline Genomic DNA Equivalents

Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland

Received 17 January 2013; Revised 21 March 2013; Accepted 28 March 2013

Academic Editor: Emanuel Strehler

Copyright © 2013 A. Katrin Helfer-Hungerbuehler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kubista, J. M. Andrade, M. Bengtsson et al., “The real-time polymerase chain reaction,” Molecular Aspects of Medicine, vol. 27, no. 2-3, pp. 95–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Bustin, “Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays,” Journal of Molecular Endocrinology, vol. 25, no. 2, pp. 169–193, 2000. View at Google Scholar · View at Scopus
  3. P. S. Bernard and C. T. Wittwer, “Real-time PCR technology for cancer diagnostics,” Clinical Chemistry, vol. 48, no. 8, pp. 1178–1185, 2002. View at Google Scholar · View at Scopus
  4. I. M. Mackay, K. E. Arden, and A. Nitsche, “Real-time PCR in virology,” Nucleic Acids Research, vol. 30, no. 6, pp. 1292–1305, 2002. View at Google Scholar · View at Scopus
  5. I. M. Mackay, “Real-time PCR in the microbiology laboratory,” Clinical Microbiology and Infection, vol. 10, no. 3, pp. 190–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Bustin and R. Mueller, “Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis,” Clinical Science, vol. 109, no. 4, pp. 365–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. I. Moreno, C. M. Tate, E. L. Knott et al., “Determination of an effective housekeeping gene for the quantification of mRNA for forensic applications,” Journal of Forensic Sciences, vol. 57, no. 4, pp. 1051–1058, 2012. View at Google Scholar
  8. I. Laurendeau, M. Bahuau, N. Vodovar et al., “TaqMan PCR-based gene dosage assay for predictive testing in individuals from a cancer family with INK4 locus haploinsufficiency,” Clinical Chemistry, vol. 45, no. 7, pp. 982–986, 1999. View at Google Scholar · View at Scopus
  9. I. Bieche, M. H. Champème, D. Vidaud, R. Lidereau, and M. Vidaud, “Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer,” International Journal of Cancer, vol. 78, no. 5, pp. 661–666, 1998. View at Google Scholar
  10. C. M. Leutenegger, C. N. Mislin, B. Sigrist, M. U. Ehrengruber, R. Hofmann-Lehmann, and H. Lutz, “Quantitative real-time PCR for the measurement of feline cytokine mRNA,” Veterinary Immunology and Immunopathology, vol. 71, no. 3-4, pp. 291–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Kessler, A. K. Helfer-Hungerbuehler, V. Cattori et al., “Quantitative TaqMan® real-time PCR assays for gene expression normalisation in feline tissues,” BMC Molecular Biology, vol. 10, article no. 106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. A. Wolf-Jackel, V. Cattori, C. P. Geret et al., “Quantification of the humoral immune response and hemoplasma blood and tissue loads in cats coinfected with “Candidatus Mycoplasma haemominutum” and feline leukemia virus,” Microbial Pathogenesis, vol. 53, no. 2, pp. 74–80, 2012. View at Google Scholar
  13. M. Novacco, F. S. Boretti, G. A. Wolf-Jackel et al., “Chronic, “Candidatus Mycoplasma turicensis” Infection,” Veterinary Research, vol. 42, no. 1, article 59, 2011. View at Google Scholar
  14. S. Molia, B. B. Chomel, R. W. Kasten et al., “Prevalence of Bartonella infection in wild African lions (Panthera leo) and cheetahs (Acinonyx jubatus),” Veterinary Microbiology, vol. 100, no. 1-2, pp. 31–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. J. Liu, D. Zheng, S. Balasubramanian et al., “Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity,” BMC Genomics, vol. 10, article 480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Riad-El Sabrouty, J. M. Blanchard, L. Marty, P. Jeanteur, and M. Piechaczyk, “The Muridae glyceraldehyde-3-phosphate dehydrogenase family,” Journal of Molecular Evolution, vol. 29, no. 3, pp. 212–222, 1989. View at Google Scholar · View at Scopus
  17. L. McDonell and G. Drouin, “The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level,” Genome, vol. 55, no. 2, pp. 147–151, 2012. View at Google Scholar
  18. Z. Zhang, N. Carriero, and M. Gerstein, “Comparative analysis of processed pseudogenes in the mouse and human genomes,” Trends in Genetics, vol. 20, no. 2, pp. 62–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Ruud, O. Fodstad, and E. Hovig, “Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells,” International Journal of Cancer, vol. 80, no. 1, pp. 119–125, 1999. View at Google Scholar
  20. B. Garbay, E. Boue-Grabot, and M. Garret, “Processed pseudogenes interfere with reverse transcriptase-polymerase chain reaction controls,” Analytical Biochemistry, vol. 237, no. 1, pp. 157–159, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. C. P. Geret, B. Riond, V. Cattori, M. L. Meli, R. Hofmann-Lehmann, and H. Lutz, “Housing and care of laboratory cats: from requirements to practice,” Schweizer Archiv fur Tierheilkunde, vol. 153, no. 4, pp. 157–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Helfer-Hungerbuehler, V. Cattori, F. S. Boretti et al., “Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma,” Retrovirology, vol. 7, no. 1, article 14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kullberg, M. A. Nilsson, U. Arnason, E. H. Harley, and A. Janke, “Housekeeping genes for phylogenetic analysis of eutherian relationships,” Molecular Biology and Evolution, vol. 23, no. 8, pp. 1493–1503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Dehée, R. Césaire, N. Désiré et al., “Quantitation of HTLV-I proviral load by a TaqMan real-time PCR assay,” Journal of Virological Methods, vol. 102, no. 1-2, pp. 37–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. H. K. Chung, T. Unangst, J. Treece, D. Weiss, and P. Markham, “Development of real-time PCR assays for quantitation of simian betaretrovirus serotype-1, -2, -3, and -5 viral DNA in Asian monkeys,” Journal of Virological Methods, vol. 152, no. 1-2, pp. 91–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Willi, F. S. Boretti, V. Cattori et al., “Identification, molecular characterization, and experimental transmission of a new hemoplasma isolate from a cat with hemolytic anemia in Switzerland,” Journal of Clinical Microbiology, vol. 43, no. 6, pp. 2581–2585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Cattori and R. Hofmann-Lehmann, “Absolute quantitation of feline leukemia virus proviral DNA and viral RNA loads by TaqMan real-time PCR and RT-PCR,” Methods in Molecular Biology, vol. 429, pp. 73–87, 2008. View at Google Scholar · View at Scopus
  28. S. A. Bustin, V. Benes, J. A. Garson et al., “The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments,” Clinical Chemistry, vol. 55, no. 4, pp. 611–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Klein, P. Janda, R. Steinborn, M. Müller, B. Salmons, and W. H. Günzburg, “Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: influence of mismatches on quantification,” Electrophoresis, vol. 20, no. 2, pp. 291–299, 1999. View at Google Scholar · View at Scopus
  30. J. U. Pontius and S. J. O'Brien, “Genome annotation resource fields—GARFIELD: a genome browser for Felis catus,” Journal of Heredity, vol. 98, no. 5, pp. 386–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. K. Kringen, C. Stormo, R. M. Grimholt, J. P. Berg, and A. P. Piehler, “Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes,” BMC Research Notes, vol. 5, no. 1, article 425, 2012. View at Google Scholar
  32. J. A. Thomas, T. D. Gagliardi, W. G. Alvord, M. Lubomirski, W. J. Bosche, and R. J. Gorelick, “Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration,” Virology, vol. 353, no. 1, pp. 41–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Désiré, A. Dehée, V. Schneider et al., “Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay,” Journal of Clinical Microbiology, vol. 39, no. 4, pp. 1303–1310, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Waters, A. L. A. Oliveira, S. Coughlan et al., “Multiplex real-time PCR for the detection and quantitation of HTLV-1 and HTLV-2 proviral load: addressing the issue of indeterminate HTLV results,” Journal of Clinical Virology, vol. 52, no. 1, pp. 38–44, 2011. View at Publisher · View at Google Scholar · View at Scopus