Table of Contents
Molecular Biology International
Volume 2014, Article ID 287430, 8 pages
http://dx.doi.org/10.1155/2014/287430
Research Article

Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

1Joint BioEnergy Institute, Emeryville, CA, USA
2Sandia National Laboratories, Livermore, CA, USA
3Physical Biosciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA
4Synthetic Biology Program, Space BioSciences Division, NASA AMES Research Center, Mail Stop 239-15, Moffett Field, CA 94035, USA

Received 22 May 2014; Accepted 21 July 2014; Published 17 August 2014

Academic Editor: Alessandro Desideri

Copyright © 2014 Peter McInerney et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. G. Fox, C. Goulding, M. G. Malkowski, L. Stewart, and A. Deacon, “Structural genomics: from genes to structures with valuable materials and many questions in between,” Nature Methods, vol. 5, no. 2, pp. 129–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Rolfs, W. R. Montor, S. Y. Sang et al., “Production and sequence validation of a complete full length ORF collection for the pathogenic bacterium Vibrio cholerae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4364–4369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Temple, P. Lamesch, S. Milstein et al., “From genome to proteome: developing expression clone resources for the human genome,” Human Molecular Genetics, vol. 15, no. 1, pp. R31–R43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Cline, J. C. Braman, and H. H. Hogrefe, “PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases,” Nucleic Acids Research, vol. 24, no. 18, pp. 3546–3551, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Dunning, P. Talmud, and S. E. Humphries, “Errors in the polymerase chain reaction,” Nucleic Acids Research, vol. 16, no. 21, p. 10393, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. R. K. Saiki, D. H. Gelfand, S. Stoffel et al., “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase,” Science, vol. 239, no. 4839, pp. 487–491, 1988. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Tindall and T. A. Kunkel, “Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase,” Biochemistry, vol. 27, no. 16, pp. 6008–6013, 1988. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Flaman, T. Frebourg, V. Moreau et al., “A rapid PCR fidelity assay,” Nucleic Acids Research, vol. 22, no. 15, pp. 3259–3260, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Keohavong and W. G. Thilly, “Fidelity of DNA polymerases in DNA amplification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9253–9257, 1989. View at Publisher · View at Google Scholar · View at Scopus
  10. P. André, A. Kim, K. Khrapko, and W. G. Thilly, “Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence,” Genome Research, vol. 7, no. 8, pp. 843–852, 1997. View at Google Scholar · View at Scopus
  11. G. S. Provost, P. L. Kretz, R. T. Hamner et al., “Transgenic systems for in vivo mutations analysis,” Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, vol. 288, no. 1, pp. 133–149, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Kunkel and K. Bebenek, “DNA replication fidelity,” Annual Review of Biochemistry, vol. 69, pp. 497–529, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Takagi, M. Nishioka, H. Kakihara et al., “Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR,” Applied and Environmental Microbiology, vol. 63, no. 11, pp. 4504–4510, 1997. View at Google Scholar · View at Scopus
  14. M. Kitabayashi, Y. Nishiya, M. Esaka, M. Itakura, and T. Imanaka, “Gene cloning and polymerase chain reaction with proliferating cell nuclear antigen from Thermococcus kodakaraensis KOD1,” Bioscience, Biotechnology and Biochemistry, vol. 66, no. 10, pp. 2194–2200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Lundberg, D. D. Shoemaker, M. W. W. Adams, J. M. Short, J. A. Sorge, and E. J. Mathur, “High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus,” Gene, vol. 108, no. 1, pp. 1–6, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Li, F. Diehl, D. Dressman, B. Vogelstein, and K. W. Kinzler, “BEAMing up for detection and quantification of rare sequence variants,” Nature Methods, vol. 3, no. 2, pp. 95–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Marsischky and J. LaBaer, “Many paths to many clones: a comparative look at high-throughput cloning methods,” Genome Research, vol. 14, no. 10, pp. 2020–2028, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. T. Lis, “Fractionation of DNA fragments by polyethylene glycol induced precipitation,” Methods in Enzymology, vol. 65, no. 1, pp. 347–353, 1980. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Choi, J. Song, H. N. Ki et al., “Unique substrate spectrum and PCR application of Nanoarchaeum equitans family B DNA polymerase,” Applied and Environmental Microbiology, vol. 74, no. 21, pp. 6563–6569, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. L. Ling, P. Keohavong, C. Dias, and W. G. Thilly, “Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases,” PCR Methods and Applications, vol. 1, no. 1, pp. 63–69, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. K. A. Eckert and T. A. Kunkel, “High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase,” Nucleic Acids Research, vol. 18, no. 13, pp. 3739–3744, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. J. F. Davidson, R. Fox, D. D. Harris, S. Lyons-Abbott, and L. A. Loeb, “Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase,” Nucleic Acids Research, vol. 31, no. 16, pp. 4702–4709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Viguera, D. Canceill, and S. D. Ehrlich, “Replication slippage involves DNA polymerase pausing and dissociation,” The EMBO Journal, vol. 20, no. 10, pp. 2587–2595, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Khrapko, H. Coller, P. André et al., “Mutational spectrometry without phenotypic selection: human mitochondrial DNA,” Nucleic Acids Research, vol. 25, no. 4, pp. 685–693, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Niimi, S. Limsirichaikul, S. Yoshida et al., “Palm mutants in DNA polymerases α and η Alter DNA replication fidelity and translesion activity,” Molecular and Cellular Biology, vol. 24, no. 7, pp. 2734–2746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Kennedy, C. Hergott, S. Dewhurst, and B. Kim, “The mechanistic architecture of thermostable Pyrococcus furiosus family B DNA polymerase motif A and its interaction with the dNTP substrate,” Biochemistry, vol. 48, no. 47, pp. 11161–11168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Kunkel, S. S. Patel, and K. A. Johnson, “Error-prone replication of repeated DNA sequences by T7 DNA polymerase in the absence of its processivity subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 6830–6834, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Huang and P. Keohavong, “Fidelity and predominant mutations produced by deep vent wild-type and exonuclease-deficient DNA polymerases during in vitro DNA amplification,” DNA and Cell Biology, vol. 15, no. 7, pp. 589–594, 1996. View at Publisher · View at Google Scholar · View at Scopus