Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2009 (2009), Article ID 417658, 6 pages
http://dx.doi.org/10.1155/2009/417658
Research Article

Persistently Elevated Level of IL-8 in Chlamydia trachomatis Infected HeLa 229 Cells is Dependent on Intracellular Available Iron

Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India

Received 22 January 2009; Accepted 16 April 2009

Academic Editor: Valacchi Giuseppe

Copyright © 2009 Harsh Vardhan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. I. Byrne and D. M. Ojcius, “Chlamydia apoptosis: life and death decisions of an intracellular pathogen,” Nature Reviews Microbiology, vol. 2, no. 10, pp. 802–808, 2004. View at Publisher · View at Google Scholar
  2. A. Dautry-Varsat, M. E. Balañá, and B. Wyplosz, “Chlamydia-host cell interactions: recent advances on bacterial entry and intracellular development,” Traffic, vol. 5, no. 8, pp. 561–570, 2004. View at Publisher · View at Google Scholar
  3. V. Vats, S. Rastogi, A. Kumar et al., “Detection of Chlamydia trachomatis by polymerase chain reaction in male patients with non-gonococcal urethritis attending an STD clinic,” Sexually Transmitted Infections, vol. 80, no. 4, pp. 327–328, 2004. View at Publisher · View at Google Scholar
  4. V. Singh, S. Rastogi, S. Garg et al., “Polymerase chain reaction for detection of endocervical Chlamydia trachomatis infection in women attending a gynecology outpatient department in India,” Acta Cytologica, vol. 46, no. 3, pp. 540–544, 2002. View at Google Scholar
  5. T. Hackstadt, “Cell biology,” in Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, R. S. Stephens, Ed., pp. 101–138, ASM Press, Washington, DC, USA, 1999. View at Google Scholar
  6. S. Dessus-Babus, S. T. Knight, and P. B. Wyrick, “Chlamydial infection of polarized HeLa cells induces PMN chemotaxis but the cytokine profile varies between disseminating and non-disseminating strains,” Cellular Microbiology, vol. 2, no. 4, pp. 317–327, 2000. View at Publisher · View at Google Scholar
  7. S. J. Rasmussen, L. Eckmann, A. J. Quayle et al., “Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis,” The Journal of Clinical Investigation, vol. 99, no. 1, pp. 77–87, 1997. View at Publisher · View at Google Scholar
  8. R. S. Stephens, “The cellular paradigm of chlamydial pathogenesis,” Trends in Microbiology, vol. 11, no. 1, pp. 44–51, 2003. View at Publisher · View at Google Scholar
  9. D. L. Patton and C.-C. Kuo, “Histopathology of Chlamydia trachomatis salpingitis after primary and repeated reinfections in the monkey subcutaneous pocket model,” Journal of Reproduction and Fertility, vol. 85, no. 2, pp. 647–656, 1989. View at Google Scholar
  10. M. E. Ward, “Mechanisms of Chlamydia-induced disease,” in Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, R. S. Stephens, Ed., pp. 171–210, ASM Press, Washington, DC, USA, 1999. View at Google Scholar
  11. P. Moreillon and P. A. Majcherczyk, “Proinflammatory activity of cell-wall constituents from gram-positive bacteria,” Scandinavian Journal of Infectious Diseases, vol. 35, no. 9, pp. 632–641, 2003. View at Publisher · View at Google Scholar
  12. J. L. Wylie, G. M. Hatch, and G. McClarty, “Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis,” Journal of Bacteriology, vol. 179, no. 23, pp. 7233–7242, 1997. View at Google Scholar
  13. R. J. Ulevitch and P. S. Tobias, “Recognition of gram-negative bacteria and endotoxin by the innate immune system,” Current Opinion in Immunology, vol. 11, no. 1, pp. 19–22, 1999. View at Publisher · View at Google Scholar
  14. H. Heine, S. Müller-Loennies, L. Brade, B. Lindner, and H. Brade, “Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC,” European Journal of Biochemistry, vol. 270, no. 3, pp. 440–450, 2003. View at Publisher · View at Google Scholar
  15. R. R. Ingalls, P. A. Rice, N. Qureshi, K. Takayama, J. S. Lin, and D. T. Golenbock, “The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated,” Infection and Immunity, vol. 63, no. 8, pp. 3125–3130, 1995. View at Google Scholar
  16. J. Rupp, H. Kothe, A. Mueller, M. Maass, and K. Dalhoff, “Imbalanced secretion of IL-1β and IL-1RA in Chlamydia pneumoniae-infected mononuclear cells from COPD patients,” European Respiratory Journal, vol. 22, no. 2, pp. 274–279, 2003. View at Publisher · View at Google Scholar
  17. K. Kasahara, R. M. Strieter, T. J. Standiford, and S. L. Kunkel, “Adherence in combination with lipopolysaccharide, tumor necrosis factor or interleukin-1β potentiates the induction of monocyte-derived interleukin-8,” Pathobiology, vol. 61, no. 2, pp. 57–66, 1993. View at Publisher · View at Google Scholar
  18. E.-Y. Choi, E.-C. Kim, H.-M. Oh et al., “Iron chelator triggers inflammatory signals in human intestinal epithelial cells: involvement of p38 and extracellular signal-regulated kinase signaling pathways,” The Journal of Immunology, vol. 172, no. 11, pp. 7069–7077, 2004. View at Google Scholar
  19. J. E. Raulston, “Response of Chlamydia trachomatis serovar E to iron restriction vitro and evidence for iron-regulated chlamydial proteins,” Infection and Immunity, vol. 65, no. 11, pp. 4539–4547, 1997. View at Google Scholar
  20. K. H. Ramsey, G. S. Miranpuri, I. M. Sigar, S. Ouellette, and G. I. Byrne, “Chlamydia trachomatis persistence in the female mouse genital tract: inducible nitric oxide synthase and infection outcome,” Infection and Immunity, vol. 69, no. 8, pp. 5131–5137, 2001. View at Publisher · View at Google Scholar
  21. A. Matsumoto and G. P. Manire, “Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci,” Journal of Bacteriology, vol. 101, no. 1, pp. 278–285, 1970. View at Google Scholar
  22. L. G. Pantoja, R. D. Miller, J. A. Ramirez, R. E. Molestina, and J. T. Summersgill, “Characterization of Chlamydia pneumoniae persistence in HEp-2 cells treated with gamma interferon,” Infection and Immunity, vol. 69, no. 12, pp. 7927–7932, 2001. View at Publisher · View at Google Scholar
  23. J. Peters, S. Hess, K. Endlich et al., “Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection,” Cellular Microbiology, vol. 7, no. 8, pp. 1099–1108, 2005. View at Publisher · View at Google Scholar
  24. M. A. Scidmore, “Cultivation and laboratory maintenance of Chlamydia trachomatis,” in Current Protocols in Microbiology, chapter 11, Unit 11A.1, John Wiley & Sons, New York, NY, USA, 2005. View at Google Scholar
  25. S. Pal, W. Hui, E. M. Peterson, and L. M. de la Maza, “Factors influencing the induction of infertility in a mouse model of Chlamydia trachomatis ascending genital tract infection,” Journal of Medical Microbiology, vol. 47, no. 7, pp. 599–605, 1998. View at Google Scholar
  26. P.-A. Mårdh, “Tubal factor infertility, with special regard to chlamydial salpingitis,” Current Opinion in Infectious Diseases, vol. 17, no. 1, pp. 49–52, 2004. View at Publisher · View at Google Scholar
  27. H. Zeidler, J. Kuipers, and L. Köhler, “Chlamydia-induced arthritis,” Current Opinion in Rheumatology, vol. 16, no. 4, pp. 380–392, 2004. View at Publisher · View at Google Scholar
  28. A. J. Quayle, “The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells,” Journal of Reproductive Immunology, vol. 57, no. 1-2, pp. 61–79, 2002. View at Publisher · View at Google Scholar
  29. Y. V. Chaly, R. S. Selvan, K. V. Fegeding, T. S. Kolesnikova, and N. N. Voitenok, “Expression of IL-8 gene in human monocytes and lymphocytes: differential regulation by TNF and IL-1,” Cytokine, vol. 12, no. 6, pp. 636–643, 2000. View at Publisher · View at Google Scholar
  30. S. P. Lad, J. Li, J. da Silva Correia et al., “Cleavage of p65/RelA of the NF-?B pathway by Chlamydia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2933–2938, 2007. View at Publisher · View at Google Scholar
  31. N. Paland, L. Böhme, R. K. Gurumurthy, A. Mäurer, A. J. Szczepek, and T. Rudel, “Reduced display of tumor necrosis factor receptor I at the host cell surface supports infection with Chlamydia trachomatis,” The Journal of Biological Chemistry, vol. 283, no. 10, pp. 6438–6448, 2008. View at Publisher · View at Google Scholar
  32. G. Weiss, D. Fuchs, A. Hausen et al., “Iron modulates interferon-gamma effects in the human myelomonocytic cell line THP-1,” Experimental Hematology, vol. 20, no. 5, pp. 605–610, 1992. View at Google Scholar
  33. A. R. O'Brien-Ladner, B. M. Blumer, and L. J. Wesselius, “Differential regulation of human alveolar macrophage-derived interleukin-1β and tumor necrosis factor-α by iron,” Journal of Laboratory and Clinical Medicine, vol. 132, no. 6, pp. 497–506, 1998. View at Google Scholar
  34. S. Golding and S. P. Young, “Iron requirements of human lymphocytes: relative contributions of intra- and extra-cellular iron,” Scandinavian Journal of Immunology, vol. 41, no. 3, pp. 229–236, 1995. View at Publisher · View at Google Scholar
  35. K. R. Buchholz and R. S. Stephens, “The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection,” Infection and Immunity, vol. 75, no. 12, pp. 5924–5929, 2007. View at Publisher · View at Google Scholar
  36. K. Turpaev, D. Litvinov, and J. Justesen, “Redox modulation of NO-dependent induction of interleukin 8 gene in monocytic U937 cells,” Cytokine, vol. 23, no. 1-2, pp. 15–22, 2003. View at Publisher · View at Google Scholar