Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2009, Article ID 947981, 7 pages
http://dx.doi.org/10.1155/2009/947981
Clinical Study

Urocortin in Second Trimester Amniotic Fluid: Its Role as Predictor of Preterm Labor

12nd Department of Obstetrics and Gynecology, Aretaieion Hospital, University of Athens, Athens 11528, Greece
2Fetal Medicine Unit, “LITO” Maternity Hospital, Athens 11524, Greece

Received 12 April 2009; Revised 27 June 2009; Accepted 20 August 2009

Academic Editor: Philipp M. Lepper

Copyright © 2009 C. Iavazzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Goldenberg and D. J. Rouse, “Prevention of premature birth,” The New England Journal of Medicine, vol. 339, no. 5, pp. 313–320, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Jacobsson, G. Hagberg, B. Hagberg, L. Ladfors, A. Niklasson, and H. Hagberg, “Cerebral palsy in preterm infants: a population-based case-control study of antenatal and intrapartal risk factors,” Acta Paediatrica, vol. 91, no. 8, pp. 946–951, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Vrachnis, A. Malamitsi-Puchner, E. Samoli et al., “Elevated mid-trimester amniotic fluid ADAM-8 concentrations as a potential risk factor for preterm delivery,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 3, pp. 186–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Malamitsi-Puchner, N. Vrachnis, E. Samoli, S. Baka, D. Hassiakos, and G. Creatsas, “Elevated second trimester amniotic fluid interferon γ-inducible T-cell α chemoattractant concentrations as a possible predictor of preterm birth,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 1, pp. 25–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. L. Goldenberg, J. C. Hauth, and W. W. Andrews, “Intrauterine infection and preterm delivery,” The New England Journal of Medicine, vol. 342, no. 20, pp. 1500–1507, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Mclean, A. Bisits, J. Davies et al., “A placental clock controlling the length of human pregnancy,” Nature Medicine, vol. 1, no. 5, pp. 460–463, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. E. W. Hillhouse and D. K. Grammatopoulos, “Role of stress peptides during human pregnancy and labour,” Reproduction, vol. 124, no. 3, pp. 323–329, 2002. View at Google Scholar · View at Scopus
  8. K. Takahashi, K. Totsune, O. Murakami, and S. Shibahara, “Urocortins as cardiovascular peptides,” Peptides, vol. 25, pp. 1723–1731, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Vauhan, C. Donaldson, J. Bittencourt et al., “Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor,” Nature, vol. 378, no. 6554, pp. 287–292, 1995. View at Google Scholar · View at Scopus
  10. D. S. Latchman, “Molecules in focus: urocortin,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 8, pp. 907–910, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Petraglia, P. Florio, R. Gallo et al., “Human placenta and fetal membranes express human urocortin mRNA and peptide,” The Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 10, pp. 3807–3810, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Gu, V. L. Clifton, J. Schwartz, G. Madsen, J. Y. Sha, and R. Smith, “Characterization of urocortin in human pregnancy,” Chinese Medical Journal, vol. 114, no. 6, pp. 618–622, 2001. View at Google Scholar · View at Scopus
  13. E. Zoumakis, K. C. Rice, P. W. Gold, and G. P. Chrousos, “Potential uses of corticotropin-releasing hormone antagonists,” Annals of the New York Academy of Sciences, vol. 1083, pp. 239–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Florio, W. Vale, and F. Petraglia, “Urocortins in human reproduction,” Peptides, vol. 25, no. 10, pp. 1751–1757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Lewis, C. Li, M. H. Perrin et al., “Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 7570–7575, 2001. View at Google Scholar
  16. S. Y. Hsu and A. J. W. Hsueh, “Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor,” Nature Medicine, vol. 7, no. 5, pp. 605–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. T. W. Lovenberg, C. W. Liaw, D. E. Grigoriadis et al., “Cloning and characterization of a functionally distinct corticotropin- releasing factor receptor subtype from rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 3, pp. 836–840, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Tu, A. J. Kastin, and W. Pan, “Corticotropin-releasing hormone receptor (CRHR)1 and CRHR2 are both trafficking and signaling receptors for urocortin,” Molecular Endocrinology, vol. 21, no. 3, pp. 700–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. M. Leitch, A. L. A. Boura, C. Botti, M. A. Read, W. A. W. Walters, and R. Smith, “Vasodilator actions of urocortin and related peptides in the human perfused placenta in vitro,” The Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 12, pp. 4510–4513, 1998. View at Google Scholar · View at Scopus
  20. R. Sirianni, B. A. Mayhew, B. R. Carr, C. R. Parker Jr., and W. E. Rainey, “Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 9, pp. 5393–5400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. K. Grammatopoulos, H. S. Randeva, M. A. Levine, E. S. Katsanou, and E. W. Hillhouse, “Urocortin, but Not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: an effect mediated via R1a and R2b CRH receptor subtypes and stimulation of Gq-proteins,” Molecular Endocrinology, vol. 14, no. 12, pp. 2076–2091, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. D. K. Grammatopoulos and E. W. Hillhouse, “Role of corticotropin-releasing hormone in onset of labour,” The Lancet, vol. 354, no. 9189, pp. 1546–1549, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. V. L. Clifton, M. A. Read, I. M. Leitch et al., “Corticotropin-releasing hormone-induced vasodilatation in the human fetal- placental circulation: involvement of the nitric oxide-cyclic guanosine 3',5'-monophosphate-mediated pathway,” The Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 10, pp. 2888–2893, 1995. View at Google Scholar · View at Scopus
  24. S. A. Jones and J. R. G. Challis, “Local stimulation of prostaglandin production by corticotropin-releasing hormone in human fetal membranes and placenta,” Biochemical and Biophysical Research Communications, vol. 159, no. 1, pp. 192–199, 1989. View at Google Scholar · View at Scopus
  25. E. Karteris, H. S. Randeva, D. K. Grammatopoulos, R. B. Jaffe, and E. W. Hillhouse, “Expression and coupling characteristics of the CRH and orexin type 2 receptors in human fetal adrenals,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4512–4519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Li and J. R. G. Challis, “Corticotropin-releasing hormone and urocortin induce secretion of matrix metalloproteinase-9 (MMP-9) without change in tissue inhibitors of MMP-1 by cultured cells from human placenta and fetal membranes,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 12, pp. 6569–6574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Petraglia, P. Florio, C. Benedetto et al., “Urocortin stimulates placental adrenocorticotropin and prostaglandin release and myometrial contractility in vitro,” The Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 4, pp. 1420–1423, 1999. View at Google Scholar · View at Scopus
  28. E. Karteris, E. W. Hillhouse, and D. K. Grammatopoulos, “Urocortin II Is expressed in human pregnant myometrial cells and regulates myosin light chain phosphorylation: potential role of the Type-2 corticotropin-releasing hormone receptor in the control of myometrial contractility,” Endocrinology, vol. 145, no. 2, pp. 890–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. Hillier, S. S. Witkin, M. A. Krohn, D. H. Watts, N. B. Kiviat, and D. A. Eschenbach, “The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection,” Obstetrics and Gynecology, vol. 81, no. 6, pp. 941–948, 1993. View at Google Scholar · View at Scopus
  30. J. D. Iams, J. Paraskos, M. B. Landon, J. N. Teteris, and F. F. Johnson, “Cervical sonography in preterm labor,” Obstetrics and Gynecology, vol. 84, no. 1, pp. 40–46, 1994. View at Google Scholar · View at Scopus
  31. J. D. Iams, R. L. Goldenberg, P. J. Meis et al., “The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network,” The New England Journal of Medicine, vol. 334, no. 9, pp. 567–572, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M.G. Crane and D. Hutchens, “Transvaginal sonographic measurement of cervical length to predict preterm birth in asymptomatic women at increased risk: a systematic review,” Ultrasound in Obstetrics and Gynecology, vol. 31, no. 5, pp. 579–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. T. P. Canavan, H. N. Simhan, and S. Caritis, “An evidence-based approach to the evaluation and treatment of premature rupture of membranes—part I,” Obstetrical and Gynecological Survey, vol. 59, no. 9, pp. 669–677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Torricelli, C. Voltolini, G. Biliotti et al., “Urocortin in amniotic fluid and Down syndrome,” Prenatal Diagnosis, vol. 29, no. 8, pp. 806–807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Madhappan, D. Kempuraj, S. Christodoulou et al., “High levels of intrauterine corticotropin-releasing hormone, urocortin, tryptase, and interleukin-8 in spontaneous abortions,” Endocrinology, vol. 144, no. 6, pp. 2285–2290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. P. C. Galle and P. J. Meis, “Complications of amniocentesis: a review,” The Journal of Reproductive Medicine, vol. 27, no. 3, pp. 149–155, 1982. View at Google Scholar · View at Scopus
  37. W. F. O'Brien, “Midtrimester genetic amniocentesis. A review of the fetal risks,” The Journal of Reproductive Medicine, vol. 29, no. 1, pp. 59–63, 1984. View at Google Scholar · View at Scopus
  38. A. Tabor, J. Philip, M. Madsen, J. Bang, E. B. Obel, and B Nørgaard-Pedersen, “Randomised controlled trial of genetic amniocentesis in 4606 low-risk women,” The Lancet, vol. 1, no. 8493, pp. 1287–1293, 1986. View at Google Scholar · View at Scopus
  39. C. G. Brumfield, S. Lin, W. Conner, P. Cosper, R. O. Davis, and J. Owen, “Pregnancy outcome following genetic amniocentesis at 11–14 versus 16–19 weeks' gestation,” Obstetrics and Gynecology, vol. 88, no. 1, pp. 114–118, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. E. C. Roper, J. C. Konje, R. C. De Chazal, D. P. Duckett, C. A. Oppenheimer, and D. J. Taylor, “Genetic amniocentesis: gestation-specific pregnancy outcome and comparison of outcome following early and traditional amniocentesis,” Prenatal Diagnosis, vol. 19, no. 9, pp. 803–807, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. V. L. Clifton, G. Qing, V. E. Murphy, J. Schwartz, G. Madsen, and R. Smith, “Localization and characterization of urocortin during human pregnancy,” Placenta, vol. 21, no. 8, pp. 782–788, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Florio, M. Torricelli, L. Galleri et al., “High fetal urocortin levels at term and preterm labor,” The Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 9, pp. 5361–5365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Florio, S. Rivest, F. M. Reis et al., “Lack of gestation-related changes of urocortin gene expression in human placenta,” Prenatal and Neonatal Medicine, vol. 4, no. 4, pp. 296–300, 1999. View at Google Scholar · View at Scopus
  44. B. Meczekalski, “Placental corticotrophin releasing hormone and urocortin—possible role in mechanism of preterm labor,” Polski Merkuriusz Lekarski, vol. 21, no. 124, pp. 398–400, 2006. View at Google Scholar · View at Scopus
  45. P. Florio, E. A. Linton, M. Torricelli et al., “Prediction of preterm delivery based on maternal plasma urocortin,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4734–4737, 2007. View at Publisher · View at Google Scholar · View at Scopus