Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2010, Article ID 380937, 11 pages
http://dx.doi.org/10.1155/2010/380937
Research Article

Preventive but Not Curative Efficacy of Celecoxib on Bladder Carcinogenesis in a Rat Model

1Institute of Pharmacology & Experimental Therapeutics, IBILI, Medicine Faculty, Sub-Unit 1 (Polo III), Coimbra University, 3000-354 Coimbra, Portugal
2Department of Urology & Renal Transplantation, Coimbra University Hospital, 3000-075 Coimbra, Portugal
3Institute for Molecular and Cellular Biology, Porto University, 4150 Porto, Portugal
4Service of Anatomic Pathology, Coimbra University Hospital, 3000-075 Coimbra, Portugal
5Pharmacology & Pharmacotoxicology Unit, Pharmacy School of Lisbon, 1649-003 Lisboa, Portugal
6Research Centre for Health Sciences, Beira Interior University, 6201-001 Covilhã, Portugal
7Immunology & Oncology Laboratory, Centre for Neuroscience and Cell Biology, 3004-517 Coimbra, Portugal

Received 29 July 2010; Revised 23 October 2010; Accepted 2 December 2010

Academic Editor: Fulvio D'Acquisto

Copyright © 2010 José Sereno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Kirkali, T. Chan, M. Manoharan et al., “Bladder cancer: epidemiology, staging and grading, and diagnosis,” Urology, vol. 66, no. 6, supplement, pp. 4–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet, and P. Boyle, “Estimates of the cancer incidence and mortality in Europe in 2006,” Annals of Oncology, vol. 18, no. 3, pp. 581–592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Matsumoto, A. Irie, T. Satoh, H. Kuruma, T. Arakawa, and S. Baba, “Occupational bladder cancer: from cohort study to biologic molecular marker,” Medical Science Monitor, vol. 11, no. 10, pp. RA311–RA315, 2005. View at Google Scholar · View at Scopus
  4. V. K. Sangar, N. Ragavan, S. S. Matanhelia, M. W. Watson, and R. A. Blades, “The economic consequences of prostate and bladder cancer in the UK,” BJU International, vol. 95, no. 1, pp. 59–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Grasso, “Bladder cancer: a major public health issue,” European Urology, Supplements, vol. 7, no. 7, pp. 510–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Sylvester, A. P. M. Van Der Meijden, W. Oosterlinck et al., “Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials,” European Urology, vol. 49, no. 3, pp. 466–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. B. Malkowicz, H. van Poppel, G. Mickisch et al., “Muscle-invasive urothelial carcinoma of the bladder,” Urology, vol. 69, no. 1, supplement, pp. 3–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Shariat, J. H. Kim, G. E. Ayala, K. Kho, T. M. Wheeler, and S. P. Lerner, “Cyclooxygenase-2 is highly expressed in carcinoma in situ and T1 transitional cell carcinoma of the bladder,” Journal of Urology, vol. 169, no. 3, pp. 938–942, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Baffa, J. Letko, C. McClung, J. LeNoir, A. Vecchione, and L. G. Gomella, “Molecular genetics of bladder cancer: targets for diagnosis and therapy,” Journal of Experimental and Clinical Cancer Research, vol. 25, no. 2, pp. 145–160, 2006. View at Google Scholar · View at Scopus
  10. D. J. Wolff, “The genetics of bladder cancer: a cytogeneticist's perspective,” Cytogenetic and Genome Research, vol. 118, no. 2–4, pp. 177–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Ahirwar, A. Mandhani, and R. D. Mittal, “Interleukin-10 G-1082A and C-819T polymorphisms as possible molecular markers of urothelial bladder cancer,” Archives of Medical Research, vol. 40, no. 2, pp. 97–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. E. Harris, “Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer,” Sub-Cellular Biochemistry, vol. 42, pp. 93–126, 2007. View at Google Scholar · View at Scopus
  13. P. C. A. Kam and A. U. L. See, “Cyclo-oxygenase isoenzymes: physiological and pharmacological role,” Anaesthesia, vol. 55, no. 5, pp. 442–449, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Di, J. Zhou, X. L. Zhou et al., “Cyclooxygenase-2 expression is associated with vascular endothelial growth factor-C and lymph node metastases in human prostate cancer,” Archives of Medical Research, vol. 40, no. 4, pp. 268–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Sengupta, S. Ghosh, R. K. Das, S. Bhattacharjee, and S. Bhattacharya, “Chemopreventive potential of diallylsulfide, lycopene and theaflavin during chemically induced colon carcinogenesis in rat colon through modulation of cyclooxygenase-2 and inducible nitric oxide synthase pathways,” European Journal of Cancer Prevention, vol. 15, no. 4, pp. 301–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. S. Fournier, V. Novikov, V. Lucidi et al., “MR monitoring of cyclooxygenase-2 inhibition of angiogenesis in a human breast cancer model in rats,” Radiology, vol. 243, no. 1, pp. 105–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. W. Stockbrügger, “Nonsteroidal anti-inflammatory drugs (NSAIDs) in the prevention of colorectal cancer,” European Journal of Cancer Prevention, vol. 8, no. 1, supplement, pp. S21–S25, 1999. View at Google Scholar · View at Scopus
  18. W. Kitayama, A. Denda, E. Okajima, T. Tsujiuchi, and Y. Konishi, “Increased expression of cyclooxygenase-2 protein in rat urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine,” Carcinogenesis, vol. 20, no. 12, pp. 2305–2310, 1999. View at Google Scholar · View at Scopus
  19. T. Shirahama, “Cyclooxygenase-2 expression is up-regulated in transitional cell carcinoma and its preneoplastic lesions in the human urinary bladder,” Clinical Cancer Research, vol. 6, no. 6, pp. 2424–2430, 2000. View at Google Scholar · View at Scopus
  20. A. Ristimäki, O. Nieminen, K. Saukkonen, K. Hotakainen, S. Nordling, and C. Haglund, “Expression of cyclooxygenase-2 in human transitional cell carcinoma of the urinary bladder,” American Journal of Pathology, vol. 158, no. 3, pp. 849–853, 2001. View at Google Scholar · View at Scopus
  21. R. D. Klein, C. S. Van Pelt, A. L. Sabichi et al., “Transitional cell hyperplasia and carcinomas in urinary bladders of transgenic mice with keratin 5 promoter-driven cyclooxygenase-2 overexpression,” Cancer Research, vol. 65, no. 5, pp. 1808–1813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Parada, J. Sereno, F. Reis et al., “Anti-inflammatory, anti-proliferative and antioxidant profiles of selective cyclooxygenase-2 inhibition as chemoprevention for rat bladder carcinogenesis,” Cancer Biology and Therapy, vol. 8, no. 17, pp. 1615–1622, 2009. View at Google Scholar · View at Scopus
  23. S. Fukushima, M. Hirose, and H. Tsuda, “Histological classification of urinary bladder cancers in rats induced by N butyl N (4 hydroxybutyl)nitrosamine,” Gann, The Japanese Journal of Cancer Research, vol. 67, no. 1, pp. 81–90, 1976. View at Google Scholar
  24. R. Montironi and R. Mazzucchelli, “Preneoplastic lesions and conditions of the urinary bladder,” EAU Update Series, vol. 1, no. 2, pp. 53–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Sauter, F. Algaba, and M. Amin, “Tumors of the urinary system: non-invasive urothelial neoplasias,” in WHO Classification of Tumors of the Urinary System and Male Genital Organs, J. N. Eble, G. Sauter, J. L. Epstein, and I. Sesterhenn, Eds., pp. 29–34, IARCC Press, Lyon, France, 2004. View at Google Scholar
  26. J. T. Leppert, O. Shvarts, K. Kawaoka, R. Lieberman, A. S. Belldegrun, and A. J. Pantuck, “Prevention of bladder cancer: a review,” European Urology, vol. 49, no. 2, pp. 226–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Estepa, S. Ródenas, and M. C. Martín, “Optimización de un método para la determinación de la peroxidación lipidica en suero humano,” Anales de la Real Academia de Farmacia, vol. 67, no. 3, pp. 1–17, 2001. View at Google Scholar · View at Scopus
  28. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power“: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Grubbs, R. A. Lubet, A. T. Koki et al., “Celecoxib inhibits N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced urinary bladder cancers in male B6D2F1 mice and female Fischer-344 rats,” Cancer Research, vol. 60, no. 20, pp. 5599–5602, 2000. View at Google Scholar · View at Scopus
  30. H. Süleyman, B. Demircan, and Y. Karagöz, “Anti-inflammatory and side effects of cyclooxygenase inhibitors,” Pharmacological Reports, vol. 59, no. 3, pp. 247–258, 2007. View at Google Scholar · View at Scopus
  31. A. L. Hsu, T. T. Ching, D. S. Wang, X. Song, V. M. Rangnekar, and C. S. Chen, “The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2,” The Journal of Biological Chemistry, vol. 275, no. 15, pp. 11397–11403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Song, H. P. Lin, A. J. Johnson et al., “Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells,” Journal of the National Cancer Institute, vol. 94, no. 8, pp. 585–591, 2002. View at Google Scholar · View at Scopus
  33. X. H. Liu, A. Kirschenbaum, S. Yao, R. Lee, J. F. Holland, and A. C. Levine, “Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo,” Journal of Urology, vol. 164, no. 3, pp. 820–825, 2000. View at Google Scholar · View at Scopus
  34. B. A. Narayanan, M. S. Condon, M. C. Bosland, N. K. Narayanan, and B. S. Reddy, “Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism(s),” Clinical Cancer Research, vol. 9, no. 9, pp. 3503–3513, 2003. View at Google Scholar · View at Scopus
  35. V. Vital-Reyes, C. Rodríguez-Burford, D. C. Chhieng et al., “Celecoxib inhibits cellular growth, decreases Ki-67 expression and modifies apoptosis in ovarian cancer cell lines,” Archives of Medical Research, vol. 37, no. 6, pp. 689–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Lewis, S. Varghese, H. Xu, and H. R. Alexander, “Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment,” Journal of Translational Medicine, vol. 4, article 48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. A. Dinarello, “Why not treat human cancer with interleukin-1 blockade?” Cancer and Metastasis Reviews, vol. 29, no. 2, pp. 317–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. B. S. Reddy, Y. Hirose, R. Lubet et al., “Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis,” Cancer Research, vol. 60, no. 2, pp. 293–297, 2000. View at Google Scholar · View at Scopus