Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2010, Article ID 704202, 8 pages
http://dx.doi.org/10.1155/2010/704202
Review Article

TLR2 and TLR4 in Ischemia Reperfusion Injury

1Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
2Opsona Therapeutics Ltd., Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James' Hospital, Dublin 8, Ireland

Received 22 March 2010; Accepted 7 April 2010

Academic Editor: Philipp M. Lepper

Copyright © 2010 F. Arslan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fukata, A. S. Vamadevan, and M. T. Abreu, “Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders,” Seminars in Immunology, vol. 21, no. 4, pp. 242–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Y. Liew, D. Xu, E. K. Brint, and L. A. J. O'Neill, “Negative regulation of Toll-like receptor-mediated immune responses,” Nature Reviews Immunology, vol. 5, no. 6, pp. 446–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. A. J. O'Neill, “How Toll-like receptors signal: what we know and what we don't know,” Current Opinion in Immunology, vol. 18, no. 1, pp. 3–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Pompilio, G. L. Polvani, G. Rossoni et al., “Effects of warm ischemia on valve endothelium,” Annals of Thoracic Surgery, vol. 63, no. 3, pp. 656–662, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Ikeda, K. Yanaga, K. Kishikawa, S. Kakizoe, M. Shimada, and K. Sugimachi, “Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats,” Hepatology, vol. 16, no. 2, pp. 454–461, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. You, D. J. Hirsch, and N. S. Morgunov, “Functional integrity of proximal tubule cells. Effects of hypoxia and ischemia,” Journal of the American Society of Nephrology, vol. 3, no. 4, pp. 965–974, 1992. View at Google Scholar · View at Scopus
  7. S. A. Hosgood, A. Bagul, B. Yang, and M. L. Nicholson, “The relative effects of warm and cold ischemic injury in an experimental model of nonheartbeating donor kidneys,” Transplantation, vol. 85, no. 1, pp. 88–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P.-A. Clavien, P. R. C. Harvey, and S. M. Strasberg, “Preservation and reperfusion injuries in liver allografts: an overview and synthesis of current studies,” Transplantation, vol. 53, no. 5, pp. 957–978, 1992. View at Google Scholar · View at Scopus
  9. G. Varotti, G. L. Grazi, G. Vetrone et al., “Causes of early acute graft failure after liver transplantation: analysis of a 17-year single-centre experience,” Clinical Transplantation, vol. 19, no. 4, pp. 492–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kosieradzki and W. Rowiński, “Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention,” Transplantation Proceedings, vol. 40, no. 10, pp. 3279–3288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. W. M. Baldwin III, C. P. Larsen, and R. L. Fairchild, “Innate immune responses to transplants: a significant variable with cadaver donors,” Immunity, vol. 14, no. 4, pp. 369–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. P. F. Halloran, P. Autenried, V. Ramassar, J. Urmson, and S. Cockfield, “Local T cell responses induce widespread MHC expression: evidence that IFN-γ induces its own expression in remote sites,” Journal of Immunology, vol. 148, no. 12, pp. 3837–3846, 1992. View at Google Scholar · View at Scopus
  13. M. R. Weiser, J. P. Williams, F. D. Moore Jr. et al., “Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement,” Journal of Experimental Medicine, vol. 183, no. 5, pp. 2343–2348, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. H. F. Weisman, T. Bartow, M. K. Leppo et al., “Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis,” Science, vol. 249, no. 4965, pp. 146–151, 1990. View at Google Scholar · View at Scopus
  15. P. R. Hansen, “Role of neutrophils in myocardial ischemia and reperfusion,” Circulation, vol. 91, no. 6, pp. 1872–1885, 1995. View at Google Scholar · View at Scopus
  16. J. E. Jordan, Z.-Q. Zhao, and J. Vinten-Johansen, “The role of neutrophils in myocardial ischemia-reperfusion injury,” Cardiovascular Research, vol. 43, no. 4, pp. 860–878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. Cannon, C. M. Gibson, C. T. Lambrew et al., “Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction,” Journal of the American Medical Association, vol. 283, no. 22, pp. 2941–2947, 2000. View at Google Scholar · View at Scopus
  18. H. M. Piper, Y. Abdallah, and C. Scháfer, “The first minutes of reperfusion: a window of opportunity for cardioprotection,” Cardiovascular Research, vol. 61, no. 3, pp. 365–371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Eefting, B. Rensing, J. Wigman et al., “Role of apoptosis in reperfusion injury,” Cardiovascular Research, vol. 61, no. 3, pp. 414–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. M. Yellon and D. J. Hausenloy, “Myocardial reperfusion injury,” The New England Journal of Medicine, vol. 357, no. 11, pp. 1121–1135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Å. B. Gustafsson and R. A. Gottlieb, “Heart mitochondria: gates of life and death,” Cardiovascular Research, vol. 77, no. 2, pp. 334–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Inserte, J. A. Barrabes, V. Hernando, and D. Garcia-Dorado, “Orphan targets for reperfusion injury,” Cardiovascular Research, vol. 83, no. 2, pp. 169–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Murphy and C. Steenbergen, “Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury,” Physiological Reviews, vol. 88, no. 2, pp. 581–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Arslan, D. P. V. de Kleijn, L. Timmers, P. A. Doevendans, and G. Pasterkamp, “Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets,” Current Pharmaceutical Design, vol. 14, no. 12, pp. 1205–1216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Faure, O. Equils, P. A. Sieling et al., “Bacterial lipopolysaccharide activates NF-?B through Toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells,” Journal of Biological Chemistry, vol. 275, no. 15, pp. 11058–11063, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. H. Boyd, S. Mathur, Y. Wang, R. M. Bateman, and K. R. Walley, “Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-κB dependent inflammatory response,” Cardiovascular Research, vol. 72, no. 3, pp. 384–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Zhao, J. Wang, L. He et al., “Deficiency in TLR4 signal transduction ameliorates cardiac injury and cardiomyocyte contractile dysfunction during ischemia,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8A, pp. 1513–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Ito, “No-reflow phenomenon and prognosis in patients with acute myocardial infarction,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, no. 9, pp. 499–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Bolli and E. Marbán, “Molecular and cellular mechanisms of myocardial stunning,” Physiological Reviews, vol. 79, no. 2, pp. 609–634, 1999. View at Google Scholar · View at Scopus
  30. A. S. Manning and D. J. Hearse, “Reperfusion-induced arrhythmias: mechanisms and prevention,” Journal of Molecular and Cellular Cardiology, vol. 16, no. 6, pp. 497–518, 1984. View at Google Scholar · View at Scopus
  31. Y. Sakata, J.-W. Dong, J. G. Vallejo et al., “Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury,” American Journal of Physiology, vol. 292, no. 1, pp. H503–H509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Favre, P. Musette, V. Douin-Echinard et al., “Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1064–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Arslan, M. B. Smeets, L. A. J. O'Neill et al., “Myocardial ischemia/reperfusion injury is mediated by leukocytic Toll-like receptor-2 and reduced by systemic administration of a novel anti-Toll-like receptor-2 antibody,” Circulation, vol. 121, no. 1, pp. 80–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Bolli, “Preconditioning: a paradigm shift in the biology of myocardial ischemia,” American Journal of Physiology, vol. 292, no. 1, pp. H19–H27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-W. Dong, J. G. Vallejo, H.-P. Tzeng, J. A. Thomas, and D. L. Mann, “Innate immunity mediates myocardial preconditioning through Toll-like receptor 2 and TIRAP-dependent signaling pathways,” American Journal of Physiology, vol. 298, no. 3, pp. H1079–H1087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. T. G. A. M. Wolfs, W. A. Buurman, A. Van Schadewijk et al., “In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-? and TNF-a mediated up-regulation during inflammation,” Journal of Immunology, vol. 168, no. 3, pp. 1286–1293, 2002. View at Google Scholar · View at Scopus
  37. J. C. Leemans, G. Stokman, N. Claessen et al., “Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney,” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2894–2903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Wu, G. Chen, K. R. Wyburn et al., “TLR4 activation mediates kidney ischemia/reperfusion injury,” Journal of Clinical Investigation, vol. 117, no. 10, pp. 2847–2859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. W. P. Pulskens, G. J. Teske, L. M. Butter et al., “Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury,” PLoS ONE, vol. 3, no. 10, article e3596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. Shigeoka, T. D. Holscher, A. J. King et al., “TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways,” Journal of Immunology, vol. 178, no. 10, pp. 6252–6258, 2007. View at Google Scholar · View at Scopus
  41. K. Rusai, D. Sollinger, M. Baumann et al., “Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury,” Pediatric Nephrology, vol. 25, no. 5, pp. 853–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Wang, C. Schmaderer, E. Kiss et al., “Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling,” Disease Models and Mechanisms, vol. 3, no. 1-2, pp. 92–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Chen, T. Wang, P. Zhou et al., “TLR engagement prevents transplantation tolerance,” American Journal of Transplantation, vol. 6, no. 10, pp. 2282–2291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Jiang, J. Arp, D. Kubelik et al., “Induction of indefinite cardiac allograft survival correlates with Toll-like receptor 2 and 4 downregulation after serine protease inhibitor-1 (Serp-1) treatment,” Transplantation, vol. 84, no. 9, pp. 1158–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. S. W. Lim, C. Li, K. O. Ahn et al., “Cyclosporine-induced renal injury induces Toll-like receptor and maturation of dendritic cells,” Transplantation, vol. 80, no. 5, pp. 691–699, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. K. O. Ahn, S. W. Lim, C. Li et al., “Influence of angiotensin II on expression of Toll-like receptor 2 and maturation of dendritic cells in chronic cyclosporine nephropathy,” Transplantation, vol. 83, no. 7, pp. 938–947, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Krüger, S. Krick, N. Dhillon et al., “Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3390–3395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Kaczorowski, A. Nakao, R. Vallabhaneni et al., “Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart,” Transplantation, vol. 87, no. 10, pp. 1455–1463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Jiang, M. Hu, J. Rao et al., “Over-expression of Toll-like receptors and their ligands in small-for-size graft,” Hepatology Research, vol. 40, no. 3, pp. 318–329, 2010. View at Google Scholar
  50. J.-F. Deng, L. Geng, Y.-G. Qian et al., “The role of Toll-like receptors 2 and 4 in acute allograft rejection after liver transplantation,” Transplantation Proceedings, vol. 39, no. 10, pp. 3222–3224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. B. Thornley, M. A. Brehm, T. G. Markees et al., “TLR agonists abrogate costimulation blockade-induced prolongation of skin allografts,” Journal of Immunology, vol. 176, no. 3, pp. 1561–1570, 2006. View at Google Scholar · View at Scopus
  52. D. R. Goldstein, B. M. Tesar, S. Akira, and F. G. Lakkis, “Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection,” Journal of Clinical Investigation, vol. 111, no. 10, pp. 1571–1578, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. R. I. Lechler, M. Sykes, A. W. Thomson, and L. A. Turka, “Organ transplantation—how much of the promise has been realized?” Nature Medicine, vol. 11, no. 6, pp. 605–613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Ziegler, D. Harhausen, C. Schepers et al., “TLR2 has a detrimental role in mouse transient focal cerebral ischemia,” Biochemical and Biophysical Research Communications, vol. 359, no. 3, pp. 574–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S.-C. Tang, T. V. Arumugam, X. Xu et al., “Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13798–13803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Qiu, M. Nishimura, Y. Wang et al., “Early release of HMGB-1 from neurons after the onset of brain ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 5, pp. 927–938, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Galloway, T. Shin, N. Huber et al., “Activation of hepatocytes by extracellular heat shock protein 72,” American Journal of Physiology, vol. 295, no. 2, pp. C514–C520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. X.-D. Shen, B. Ke, Y. Zhai et al., “Toll-like receptor and heme oxygenase-1 signaling in hepatic ischemia/reperfusion injury,” American Journal of Transplantation, vol. 5, no. 8, pp. 1793–1800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Zhang, H. Wu, L. Wang, J. Zhang, H. Wang, and Q. Zheng, “TLR2 mRNA upregulation in ischemic lobes in mouse partial hepatic ischemia/reperfusion injury model,” Journal of Huazhong University of Science and Technology Medical Science, vol. 24, no. 2, pp. 144–146, 2004. View at Google Scholar · View at Scopus
  60. C. J. Aprahamian, R. G. Lorenz, C. M. Harmon, and R. A. Dimmit, “Toll-like receptor 2 is protective of ischemia-reperfusion-mediated small-bowel injury in a murine model,” Pediatric Critical Care Medicine, vol. 9, no. 1, pp. 105–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Lech, A. Avila-Ferrufino, R. Allam et al., “Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein,” Journal of Immunology, vol. 183, no. 6, pp. 4109–4118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. B. S. Kim, S. W. Lim, C. Li et al., “Ischemia-reperfusion injury activates innate immunity in rat kidneys,” Transplantation, vol. 79, no. 10, pp. 1370–1377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. G. Robson, “Toll-like receptors and renal disease,” Nephron Experimental Nephrology, vol. 113, no. 1, pp. e1–e7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J.-X. Zhang, H.-S. Wu, H. Wang, J.-H. Zhang, Y. Wang, and Q.-C. Zheng, “Protection against hepatic ischemia/reperfusion injury via downregulation of Toll-like receptor 2 expression by inhibition of Kupffer cell function,” World Journal of Gastroenterology, vol. 11, no. 28, pp. 4423–4426, 2005. View at Google Scholar · View at Scopus
  65. W. Hui, Z. Jinxiang, W. Heshui, L. Zhuoya, and Z. Qichang, “Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury,” Biochemical and Biophysical Research Communications, vol. 389, no. 2, pp. 328–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Jin, L. Wang, H.-S. Wu et al., “N-acetylcysteine inhibits activation of Toll-like receptor 2 and 4 gene expression in the liver and lung after partial hepatic ischemia-reperfusion injury in mice,” Hepatobiliary and Pancreatic Diseases International, vol. 6, no. 3, pp. 284–289, 2007. View at Google Scholar · View at Scopus
  67. F. Hua, J. Ma, T. Ha et al., “Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice,” Brain Research, vol. 1262, no. C, pp. 100–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Hua, J. Ma, T. Ha et al., “Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury,” Journal of Neuroimmunology, vol. 199, no. 1-2, pp. 75–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Matzinger, “The danger model: a renewed sense of self,” Science, vol. 296, no. 5566, pp. 301–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Matzinger, “Friendly and dangerous signals: is the tissue in control?” Nature Immunology, vol. 8, no. 1, pp. 11–13, 2007. View at Publisher · View at Google Scholar · View at Scopus