Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 217696, 6 pages
http://dx.doi.org/10.1155/2012/217696
Research Article

Activation of Peroxisome Proliferator-Activated Receptor-Gamma by Glitazones Reduces the Expression and Release of Monocyte Chemoattractant Protein-1 in Human Mesothelial Cells

1Medizinische Poliklinik-Innenstadt, Klinikum der Universitaet Muenchen, Pettenkoferstr. 8a, 80336 Muenchen, Germany
2Chirurgische Klinik-Innenstadt, Klinikum der Universitaet Muenchen, Nußbaumstr. 20, 80336 Muenchen, Germany

Received 9 August 2011; Accepted 30 October 2011

Academic Editor: Wolfgang Neuhofer

Copyright © 2012 Matthias Sauter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Topley, T. Liberek, A. Davenport, F. K. Li, H. Fear, and J. D. Williams, “Activation of inflammation and leukocyte recruitment into the peritoneal cavity,” Kidney International, Supplement, vol. 50, no. 56, pp. S17–S21, 1996. View at Google Scholar · View at Scopus
  2. N. Topley, “The cytokine network controlling peritoneal inflammation,” Peritoneal Dialysis International, vol. 15, no. 7, pp. S35–S40, 1995. View at Google Scholar · View at Scopus
  3. A. Jorres, K. Ludat, K. Sander et al., “The peritoneal fibroblast and the control of peritoneal inflammation,” Kidney International, Supplement, vol. 50, no. 56, pp. S22–S27, 1996. View at Google Scholar · View at Scopus
  4. S. M. Krane and M. B. Goldring, “Potential role for interleukin-1 in fibrosis associated with chronic ambulatory peritoneal dialysis,” Blood Purification, vol. 6, no. 3, pp. 173–177, 1988. View at Google Scholar · View at Scopus
  5. C. Knouff and J. Auwerx, “Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology,” Endocrine Reviews, vol. 25, no. 6, pp. 899–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Li, G. Pascual, and C. K. Glass, “Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4699–4707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Rival, N. Benéteau, V. Chapuis et al., “Cardiovascular drugs inhibit MMP-9 activity from human THP-1 macrophages,” DNA and Cell Biology, vol. 23, no. 5, pp. 283–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Momoi, K. Murao, H. Imachi et al., “Inhibition of monocyte chemoattractant protein-1 expression in cytokine-treated human lung epithelial cells by thiazolidinedione,” Chest, vol. 120, no. 4, pp. 1293–1300, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Y. Ohta, Y. Nagai, T. Takamura, E. Nohara, and K. I. Kobayashi, “Inhibitory effect of troglitazone on TNF-α-induced expression of monocyte chemoattractant protein-1 (MCP-1) in human endothelial cells,” Diabetes Research and Clinical Practice, vol. 48, no. 3, pp. 171–176, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Gruden, G. Setti, A. Hayward et al., “Mechanical stretch induces monocyte chemoattractant activity via an NF-κB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone,” Journal of the American Society of Nephrology, vol. 16, no. 3, pp. 688–696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. V. W. M. van Hinsbergh, T. Kooistra, M. A. Scheffer, J. H. van Bockel, and G. N. P. van Muijen, “Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells,” Blood, vol. 75, no. 7, pp. 1490–1497, 1990. View at Google Scholar · View at Scopus
  12. L. Fink, W. Seeger, L. Ermert et al., “Real-time quantitative RT-PCR after laser-assisted cell picking,” Nature Medicine, vol. 4, no. 11, pp. 1329–1333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Park, S. Y. Choi, M. H. Kim et al., “The TGF-β-induced gene product, βig-h3: its biological implications in peritoneal dialysis,” Nephrology Dialysis Transplantation, vol. 23, no. 1, pp. 126–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Peng, H. Liu, F. Liu, Y. Liu, J. Li, and X. Chen, “Troglitazone inhibits synthesis of transforming growth factor-β1 and reduces matrix production in human peritoneal mesothelial cells,” Nephrology, vol. 11, no. 6, pp. 516–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Sauter, C. D. Cohen, M. Wörnle, T. Mussack, R. Ladurner, and T. Sitter, “ACE inhibitor and AT1-receptor blocker attenuate the production of VEGF in mesothelial cells,” Peritoneal Dialysis International, vol. 27, no. 2, pp. 167–172, 2007. View at Google Scholar · View at Scopus
  16. M. Sach, K. Bauermeister, J. A. Burger et al., “Inverse MCP-1/IL-8 ratio in effluents of CAPD patients with peritonitis and in isolated cultured human peritoneal macrophages,” Nephrology Dialysis Transplantation, vol. 12, no. 2, pp. 315–320, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. A. R. Malik, M. A. Little, M. Henriksson, F. W. K. Tam, and E. A. Brown, “Peritonitis, peritoneal inflammation and membrane permeability: a longitudinal study of dialysate and serum MCP-1 in stable patients on peritoneal dialysis,” Journal of Nephrology, vol. 20, no. 3, pp. 340–349, 2007. View at Google Scholar · View at Scopus
  18. T. Y. H. Wong, A. O. Phillips, J. Witowski, and N. Topley, “Glucose-mediated induction of TGF-β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent,” Kidney International, vol. 63, no. 4, pp. 1404–1416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Jonjic, G. Peri, S. Bernasconi et al., “Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells,” Journal of Experimental Medicine, vol. 176, no. 4, pp. 1165–1174, 1992. View at Google Scholar · View at Scopus
  20. A. Chawta, J. J. Repa, R. M. Evans, and D. J. Mangelsdorf, “Nuclear receptors and lipid physiology: opening the x-files,” Science, vol. 294, no. 5548, pp. 1866–1870, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. H. Lin, Y. F. Lin, S. W. Kuo, Y. J. Hsu, and Y. J. Hung, “Rosiglitazone improves glucose metabolism in nondiabetic uremic patients on CAPD,” American Journal of Kidney Diseases, vol. 42, no. 4, pp. 774–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Y. H. Wong, C. C. Szeto, K. M. Chow, C. B. Leung, C. W. K. Lam, and P. K. T. Li, “Rosiglitazone reduces insulin requirement and C-reactive protein levels in type 2 diabetic patients receiving peritoneal dialysis,” American Journal of Kidney Diseases, vol. 46, no. 4, pp. 713–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Yao, K. Pawlaczyk, E. R. Ayala et al., “Peroxisome proliferator-activated receptor-γ agonists diminish peritoneal functional and morphological changes induced by bioincompatible peritoneal dialysis solution,” Blood Purification, vol. 24, no. 5-6, pp. 575–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Sandoval, J. Loureiro, G. González-Mateo et al., “PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage,” Laboratory Investigation, vol. 90, no. 10, pp. 1517–1532, 2010. View at Publisher · View at Google Scholar
  26. D. Hornung, V. A. Chao, J.-L. Vigne, D. Wallwiener, and R. N. Taylor, “Thiazolidinedione inhibition of peritoneal inflammation,” Gynecologic and Obstetric Investigation, vol. 55, no. 1, pp. 20–24, 2003. View at Publisher · View at Google Scholar
  27. S. E. Nissen and K. Wolski, “Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes,” The New England Journal of Medicine, vol. 356, no. 24, pp. 2457–2471, 2007. View at Google Scholar · View at Scopus