Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 684274, 6 pages
http://dx.doi.org/10.1155/2012/684274
Review Article

Lipopolysaccharides: From Erinyes to Charites

Department of Health Sciences, Institute of Microbiology, University “Magna Graecia” of Catanzaro, Via T. Campanella, 115, 88100 Catanzaro, Italy

Received 15 November 2011; Accepted 26 February 2012

Academic Editor: Amal O. Amer

Copyright © 2012 Alfredo Focà et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dixon-Kennedy, Encyclopedia of Greco-Roman Mythology, ABC-CLIO, Santa Barbara, Calif, USA, 1998.
  2. D. S. Kabanov and I. R. Prokhorenko, “Structural analysis of lipopolysaccharides from gram-negative bacteria,” Biochemistry, vol. 75, no. 4, pp. 383–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. K. L. Williams, “Historical and emerging themes,” in Endotoxins, Pyrogens, LAL Testing and Depyrogenation, K. L. Williams, Ed., Eli Lilly & Company, New York, NY, USA, 2007. View at Google Scholar
  5. G. Matera, M. C. Liberto, A. Pollio et al., “Extraction and characterization of the lipopolysaccaride of Bartonella quintana,” Infezioni in Medicina, vol. 7, no. 2, pp. 105–107, 1999. View at Google Scholar · View at Scopus
  6. U. Zähringer, B. Lindner, Y. A. Knirel et al., “Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T,” Journal of Biological Chemistry, vol. 279, no. 20, pp. 21046–21054, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. I. Miller, R. K. Ernst, and M. W. Bader, “LPS, TLR4 and infectious disease diversity,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 36–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Srinivasan, “Telling apart friend from foe: discriminating between commensals and pathogens at mucosal sites,” Innate Immunity, vol. 16, no. 6, pp. 391–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Zhu, S. Y. Oh, T. Zheng, and Y. K. Kim, “Immunomodulating effects of endotoxin in mouse models of allergic asthma,” Clinical and Experimental Allergy, vol. 40, no. 4, pp. 536–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Bach, “The effect of infections on susceptibility to autoimmune and allergic diseases,” The New England Journal of Medicine, vol. 347, no. 12, pp. 911–920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. Round, R. M. O'Connell, and S. K. Mazmanian, “Coordination of tolerogenic immune responses by the commensal microbiota,” Journal of Autoimmunity, vol. 34, no. 3, pp. J220–J225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Aumeunier, F. Grela, A. Ramadan et al., “Systemic toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice,” PLoS One, vol. 5, no. 7, Article ID e11484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Ungaro, M. Fukata, D. Hsu et al., “A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis,” American Journal of Physiology, vol. 296, no. 6, pp. G1167–G1179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Cario, “Toll-like receptors in inflammatory bowel diseases: a decade later,” Inflammatory Bowel Diseases, vol. 16, no. 9, pp. 1583–1597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. K. Ellestad, S. Tsutsui, F. Noorbakhsh et al., “Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells,” Journal of Immunology, vol. 183, no. 1, pp. 298–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. W. Yao, G. H. Zhang, Y. Y. Zhang et al., “Lipopolysaccharide pretreatment protects against ischemia/reperfusion injury via increase of HSP70 and inhibition of NF-κB,” Cell Stress and Chaperones, vol. 16, no. 3, pp. 287–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Mouihate, M. A. Galic, S. L. Ellis, S. J. Spencer, S. Tsutsui, and Q. J. Pittman, “Early life activation of toll-like receptor 4 reprograms neural anti-inflammatory pathways,” Journal of Neuroscience, vol. 30, no. 23, pp. 7975–7983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Popa, S. Abdollahi-Roodsaz, L. A. B. Joosten et al., “Bartonella quintana lipopolysaccharide is a natural antagonist of toll-like receptor 4,” Infection and Immunity, vol. 75, no. 10, pp. 4831–4837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Matera, M. C. Liberto, L. A. B. Joosten et al., “The janus face of Bartonella quintana recognition by toll-like receptors (TLRs): a review,” European Cytokine Network, vol. 19, no. 3, pp. 113–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Bengoechea, H. Najdenski, and M. Skurnik, “Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors,” Molecular Microbiology, vol. 52, no. 2, pp. 451–469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Liberto, G. Matera, A. G. Lamberti, G. S. Barreca, A. Quirino, and A. Focà, “In vitro Bartonella quintana infection modulates the programmed cell death and inflammatory reaction of endothelial cells,” Diagnostic Microbiology and Infectious Disease, vol. 45, no. 2, pp. 107–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Matera, M. C. Liberto, A. Quirino et al., “Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis: a study on the human whole blood and a rat model,” International Immunopharmacology, vol. 3, no. 6, pp. 853–864, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Abdollahi-Roodsaz, L. A. B. Joosten, M. F. Roelofs et al., “Inhibition of toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis,” Arthritis and Rheumatism, vol. 56, no. 9, pp. 2957–2967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Ogawa, P. Rafiee, J. Heidemann et al., “Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells,” Journal of Immunology, vol. 170, no. 12, pp. 5956–5964, 2003. View at Google Scholar · View at Scopus
  25. G. Matera, A. Quirino, A. G. Lamberti, A. Focà, and M. C. Liberto, “Bartonellae: stealthy pathogens or novel drugs factories,” Biochemistry, vol. 76, no. 9, pp. 1073–1074, 2011. View at Google Scholar
  26. R. N. Coler, S. Bertholet, M. Moutaftsi et al., “Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant,” PLoS One, vol. 6, no. 1, Article ID e16333, 2011. View at Publisher · View at Google Scholar · View at Scopus