Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012 (2012), Article ID 728417, 9 pages
http://dx.doi.org/10.1155/2012/728417
Research Article

Serum IL-18 Is Closely Associated with Renal Tubulointerstitial Injury and Predicts Renal Prognosis in IgA Nephropathy

Renal Division, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, China

Received 23 August 2011; Revised 20 October 2011; Accepted 20 October 2011

Academic Editor: Philipp M. Lepper

Copyright © 2012 Beili Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. D'Amico, “Natural history of idiopathic IgA nephropathy: role of clinical and histological prognostic factors,” American Journal of Kidney Diseases, vol. 36, no. 2, pp. 227–237, 2000. View at Google Scholar · View at Scopus
  2. A. Koyama, M. Igarashi, and M. Kobayashi, “Natural history and risk factors for immunoglobulin A nephropathy in Japan,” American Journal of Kidney Diseases, vol. 29, no. 4, pp. 526–532, 1997. View at Google Scholar · View at Scopus
  3. E. Alamartine, J. C. Sabatier, C. Guerin, J. M. Berliet, and F. Berthoux, “Prognostic factors in mesangial IgA glomerulonephritis: an extensive study with univariate and multivariate analyses,” American Journal of Kidney Diseases, vol. 18, no. 1, pp. 12–19, 1991. View at Google Scholar · View at Scopus
  4. L. Daniel, Y. Saingra, R. Giorgi, C. Bouvier, J. F. Pellissier, and Y. Berland, “Tubular lesions determine prognosis of IgA nephropathy,” American Journal of Kidney Diseases, vol. 35, no. 1, pp. 13–20, 2000. View at Google Scholar · View at Scopus
  5. H. Okamura, H. Tsutsui, T. Komatsu et al., “Cloning of a new cytokine that induces IFN-γ production by T cells,” Nature, vol. 378, no. 6552, pp. 88–91, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Y. Melnikov, T. Ecder, G. Fantuzzi et al., “Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure,” Journal of Clinical Investigation, vol. 107, no. 9, pp. 1145–1152, 2001. View at Google Scholar · View at Scopus
  7. S. Gangemi, A. Mallamace, P. L. Minciullo et al., “Involvement of interleukin-18 in patients on maintenance haemodialysis,” American Journal of Nephrology, vol. 22, no. 5-6, pp. 417–421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Matsumoto and K. Kanmatsuse, “Elevated interleukin-18 levels in the urine of nephrotic patients,” Nephron, vol. 88, no. 4, pp. 334–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Fornoni, A. Ijaz, T. Tejada, and O. Lenz, “Role of inflammation in diabetic nephropathy,” Current Diabetes Reviews, vol. 4, no. 1, pp. 10–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. S. Lee, M. S. Lee, S. M. Lee et al., “Histological grading of IgA nephropathy predicting renal outcome: revisiting H.S. Lee's glomerular grading system,” Nephrology Dialysis Transplantation, vol. 20, no. 2, pp. 342–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. National Kidney Foundation, “K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification,” American Journal of Kidney Diseases, vol. 39, supplement 1, pp. S83–S86, 2002. View at Google Scholar
  12. Y. Tan, J. J. Zhang, G. Liu, H. Zhang, and M. H. Zhao, “The level of urinary secretory immunoglobulin A (sIgA) of patients with IgA nephropathy is elevated and associated with pathological phenotypes,” Clinical and Experimental Immunology, vol. 156, no. 1, pp. 111–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. R. Parikh, J. Mishra, H. Thiessen-Philbrook et al., “Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery,” Kidney International, vol. 70, no. 1, pp. 199–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Gracie, S. E. Robertson, and I. B. McInnes, “Interleukin-18,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 213–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. A. Shui, S. M. Ka, W. M. Wu et al., “LPS-evoked IL-18 expression in mesangial cells plays a role in accelerating lupus nephritis,” Rheumatology, vol. 46, no. 8, pp. 1277–1284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. K. Washburn, M. Zappitelli, A. A. Arikan et al., “Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children,” Nephrology Dialysis Transplantation, vol. 23, no. 2, pp. 566–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. R. Parikh, E. Abraham, M. Ancukiewicz, and C. L. Edelstein, “Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3046–3052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. Parikh, A. Jani, V. Y. Melnikov, S. Faubel, and C. L. Edelstein, “Urinary interleukin-18 is a marker of human acute tubular necrosis,” American Journal of Kidney Diseases, vol. 43, no. 3, pp. 405–414, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Ling, N. Zhaohui, H. Ben et al., “Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography,” Nephron—Clinical Practice, vol. 108, no. 3, pp. c176–c181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. K. Chiang, S. P. Hsu, M. F. Pai et al., “Interleukin-18 is a strong predictor of hospitalization in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 19, no. 11, pp. 2810–2815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Lonnemann, D. Novick, M. Rubinstein, and C. A. Dinarello, “Interleukin-18, interleukin-18 binding protein and impaired production of interferon-γ in chronic renal failure,” Clinical Nephrology, vol. 60, no. 5, pp. 327–334, 2003. View at Google Scholar · View at Scopus
  22. C. K. Chiang, S. P. Hsu, M. F. Pai et al., “Plasma interleukin-18 levels in chronic renal failure and continuous ambulatory peritoneal dialysis,” Blood Purification, vol. 23, no. 2, pp. 144–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Calvani, H. B. Richards, M. Tucci, G. Pannarale, and F. Silvestris, “Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis,” Clinical and Experimental Immunology, vol. 138, no. 1, pp. 171–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Hewins, M. D. Morgan, N. Holden et al., “IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis,” Kidney International, vol. 69, no. 3, pp. 605–615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Faust, J. Menke, J. Kriegsmann et al., “Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis,” Arthritis and Rheumatism, vol. 46, no. 11, pp. 3083–3095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Y.Y. Chan, J. C.K. Leung, A. W.L. Tsang, S. C.W. Tang, and K. N. Lai, “Activation of tubular epithelial cells by mesangial-derived TNF-α: Glomerulotubular communication in IgA nephropathy,” Kidney International, vol. 67, no. 2, pp. 602–612, 2005. View at Publisher · View at Google Scholar
  27. C. Gomez-Guerrero, M. J. Lopez-Armada, E. Gonzalez, and J. Egido, “Soluble IgA and IgG aggregates are catabolized by cultured rat mesangial cells and induce production of TNF-α and IL-6, and proliferation,” Journal of Immunology, vol. 153, no. 11, pp. 5247–5256, 1994. View at Google Scholar
  28. J. Xiao, J. C. K. Leung, L. Y. Y. Chan et al., “Protective effect of peroxisome proliferator-activated receptor-gamma agonists on activated renal proximal tubular epithelial cells in IgA nephropathy,” American Journal of Physiology—Renal Physiology, vol. 294, pp. F945–F955, 2008. View at Google Scholar
  29. M. Neighbors, X. Xu, F. J. Barrat et al., “A critical role for interleukin 18 in primary and memory effector responses to Listeria monocytogenes that extends beyond its effects on interferon γ production,” Journal of Experimental Medicine, vol. 194, no. 3, pp. 343–354, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Micallef, T. Ohtsuki, K. Kohno et al., “Interferon-γ-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-γ production,” European Journal of Immunology, vol. 26, no. 7, pp. 1647–1651, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. M. Morel, C. C. Park, K. Zhu, P. Kumar, J. H. Ruth, and A. E. Koch, “Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 34679–34691, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Olee, S. Hashimoto, J. Quach, and M. Lotz, “IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses,” Journal of Immunology, vol. 162, no. 2, pp. 1096–1100, 1999. View at Google Scholar · View at Scopus
  33. A. J. Puren, G. Fantuzzi, Y. Gu, M. S. S. Su, and C. A. Dinarello, “Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1β via TNFα production from non-CD14+ human blood mononuclear cells,” Journal of Clinical Investigation, vol. 101, no. 3, pp. 711–721, 1998. View at Google Scholar · View at Scopus
  34. T. A. Fehniger, M. H. Shah, M. J. Turner et al., “Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response,” Journal of Immunology, vol. 162, no. 8, pp. 4511–4520, 1999. View at Google Scholar · View at Scopus
  35. H. Kohka, T. Yoshino, H. Iwagaki et al., “Interleukin-18/interferon-γ-inducing factor, a novel cytokine, up- regulates ICAM-1 (CD54) expression in KG-1 cells,” Journal of Leukocyte Biology, vol. 64, no. 4, pp. 519–527, 1998. View at Google Scholar