Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2012, Article ID 920517, 10 pages
http://dx.doi.org/10.1155/2012/920517
Review Article

Pentraxin 3(PTX 3): An Endogenous Modulator of the Inflammatory Response

1Department of Cardiac Surgery, University Hospital and Medical School of Hradec Kralove, Charles University in Prague, 12843 Prague, Czech Republic
2Department of Clinical Immunology and Allergology, University Hospital and Medical School of Hradec Kralove, Charles University in Prague, 12843 Prague, Czech Republic

Received 4 December 2011; Revised 30 January 2012; Accepted 1 February 2012

Academic Editor: François Mach

Copyright © 2012 P. Kunes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Medzhitov and C. Janeway Jr., “Advances in immunology: innate immunity,” The New England Journal of Medicine, vol. 343, no. 5, pp. 338–344, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Meylan, J. Tschopp, and M. Karin, “Intracellular pattern recognition receptors in the host response,” Nature, vol. 442, no. 7098, pp. 39–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kono and K. L. Rock, “How dying cells alert the immune system to danger,” Nature Reviews Immunology, vol. 8, no. 4, pp. 279–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Murphy, P. R. Tedbury, S. Homer-Vanniasinkam, J. H. Walker, and S. Ponnambalam, “Biochemistry and cell biology of mammalian scavenger receptors,” Atherosclerosis, vol. 182, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lu, L. L. Marnell, K. D. Marjon, C. Mold, T. W. Du Clos, and P. D. Sun, “Structural recognition and functional activation of FcγR by innate pentraxins,” Nature, vol. 456, no. 7224, pp. 989–992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Bottazzi, A. Doni, C. Garlanda, and A. Mantovani, “An integrated view of humoral innate immunity: pentraxins as a paradigm,” Annual Review of Immunology, vol. 28, pp. 157–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Bottazzi, C. Garlanda, A. Cotena et al., “The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity,” Immunological Reviews, vol. 227, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Bottazzi, V. Vouret-Craviari, A. Bastone et al., “Multimer formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component,” Journal of Biological Chemistry, vol. 272, no. 52, pp. 32817–32823, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Introna, V. V. Alles, M. Castellano et al., “Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites,” Blood, vol. 87, no. 5, pp. 1862–1872, 1996. View at Google Scholar · View at Scopus
  13. A. Basile, A. Sica, E. D'Aniello et al., “Characterization of the promoter for the human long pentraxin PTX3: role of NF-κB in tumor necrosis factor-α and interleukin-1β regulation,” Journal of Biological Chemistry, vol. 272, no. 13, pp. 8172–8178, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Han, M. Mura, C. F. Andrade et al., “TNFα-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK,” Journal of Immunology, vol. 175, no. 12, pp. 8303–8311, 2005. View at Google Scholar · View at Scopus
  15. G. D. Norata, P. Marchesi, A. Pirillo et al., “Long pentraxin 3, a key component of innate immunity, is modulated by high-density lipoproteins in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 925–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Doni, G. Mantovani, C. Porta et al., “Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29983–29992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Jaillon, G. Peri, Y. Delneste et al., “The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 793–804, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Zernecke, I. Bot, Y. Djalali-Talab et al., “Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis,” Circulation Research, vol. 102, no. 2, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Deban, R. C. Russo, M. Sironi et al., “Regulation of leukocyte recruitment by the long pentraxin PTX3,” Nature Immunology, vol. 11, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Baruah, A. Propato, I. E. Dumitriu et al., “The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens,” Blood, vol. 107, no. 1, pp. 151–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Doni, M. Michela, B. Bottazzi et al., “Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-γ,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 797–802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Maina, A. Cotena, A. Doni et al., “Coregulation in human leukocytes of the long pentraxin PTX3 and TSG-6,” Journal of Leukocyte Biology, vol. 86, no. 1, pp. 123–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Damazo, S. Yona, R. J. Flower, M. Perretti, and S. M. Oliani, “Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis,” Journal of Immunology, vol. 176, no. 7, pp. 4410–4418, 2006. View at Google Scholar · View at Scopus
  24. G. Peri, M. Introna, D. Corradi et al., “PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans,” Circulation, vol. 102, no. 6, pp. 636–641, 2000. View at Google Scholar · View at Scopus
  25. R. Latini, A. P. Maggioni, G. Peri et al., “Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 110, no. 16, pp. 2349–2354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kotooka, T. Inoue, S. Aoki, M. Anan, H. Komoda, and K. Node, “Prognostic value of pentraxin 3 in patients with chronic heart failure,” International Journal of Cardiology, vol. 130, no. 1, pp. 19–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Suzuki, Y. Takeishi, T. Niizeki et al., “Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure,” American Heart Journal, vol. 155, no. 1, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. S. Jenny, A. M. Arnold, L. H. Kuller, R. P. Tracy, and B. M. Psaty, “Associations of pentraxin 3 with cardiovascular disease and all-cause death: the cardiovascular health study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 594–599, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Kunes, V. Lonsky, J. Mandak et al., “The long pentraxin 3 in cardiac surgery: distinct responses in “on-pump” and “off-pump” patients,” Scandinavian Cardiovascular Journal, vol. 41, no. 3, pp. 171–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ogawa, Y. Kawano, T. Imamura et al., “Reciprocal contribution of pentraxin 3 and C-reactive protein to obesity and metabolic syndrome,” Obesity, vol. 18, no. 9, pp. 1871–1874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Klouche, G. Peri, C. Knabbe et al., “Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells,” Atherosclerosis, vol. 175, no. 2, pp. 221–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Napoleone, A. Di Santo, A. Bastone et al., “Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. 782–787, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Napoleone, A. Di Santo, G. Peri et al., “The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 203–209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Rolph, S. Zimmer, B. Bottazzi, C. Garlanda, A. Mantovani, and G. K. Hansson, “Production of the long pentraxin PTX3 in advanced atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. e10–e14, 2002. View at Google Scholar · View at Scopus
  35. A. Savchenko, M. Imamura, R. Ohashi et al., “Expression of pentraxin 3 (PTX3) in human atherosclerotic lesions,” Journal of Pathology, vol. 215, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Naruko, M. Ueda, K. Haze et al., “Neutrophil infiltration of culprit lesions in acute coronary syndromes,” Circulation, vol. 106, no. 23, pp. 2894–2900, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. G. Ionita, P. van den Borne, L. M. Catanzariti et al., “High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 9, pp. 1842–1848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Matsui, J. Ishii, F. Kitagawa et al., “Pentraxin 3 in unstable angina and non-ST-segment elevation myocardial infarction,” Atherosclerosis, vol. 210, no. 1, pp. 220–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Kotooka, T. Inoue, D. Fujimatsu et al., “Pentraxin3 is a novel marker for stent-induced inflammation and neointimal thickening,” Atherosclerosis, vol. 197, no. 1, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. P. van Rossum, H. H. Pas, F. Fazzini et al., “Abundance of the long pentraxin PTX3 at sites of leukocytoclastic lesions in patients with small-vessel vasculitis,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 986–991, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. G. D. Norata, P. Marchesi, V. K. Pulakazhi Venu et al., “Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis,” Circulation, vol. 120, no. 8, pp. 699–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Salio, S. Chimenti, N. D. Angelis et al., “Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 117, no. 8, pp. 1055–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Brambilla, M. Camera, D. Colnago et al., “Tissue factor in patients with acute coronary syndromes: expression in platelets, leukocytes, and platelet-leukocyte aggregates,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 947–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Maugeri, P. Rovere-Querini, M. Slavich et al., “Early and transient release of leukocyte pentraxin 3 during acute myocardial infarction,” Journal of Immunology, vol. 187, no. 2, pp. 970–979, 2011. View at Publisher · View at Google Scholar
  46. A. A. Manfredi, P. Rovere-Querini, B. Bottazzi, C. Garlanda, and A. Mantovani, “Pentraxins, humoral innate immunity and tissue injury,” Current Opinion in Immunology, vol. 20, no. 5, pp. 538–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. L. A. Ferri, N. Maugeri, P. Rovere-Querini et al., “Anti-inflammatory action of apoptotic cells in patients with acute coronary syndromes,” Atherosclerosis, vol. 205, no. 2, pp. 391–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. T. Roumenina, M. M. Ruseva, A. Zlatarova et al., “Interaction of C1q with IgG1, C-reactive protein and pentraxin 3: mutational studies using recombinant globular head modules of human C1q A, B, and C chains,” Biochemistry, vol. 45, no. 13, pp. 4093–4104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Inforzato, G. Peri, A. Doni et al., “Structure and function of the long pentraxin PTX3 glycosidic moiety: fine-tuning of the interaction with C1q and complement activation,” Biochemistry, vol. 45, no. 38, pp. 11540–11551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. J. Nauta, B. Bottazzi, A. Mantovani et al., “Biochemical and functional characterization of the interaction between pentraxin 3 and C1q,” European Journal of Immunology, vol. 33, no. 2, pp. 465–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. L. A. Trouw, A. A. Bengtsson, K. A. Gelderman, B. Dahlbäck, G. Sturfelt, and A. M. Blom, “C4b-binding protein and factor H compensate for the loss of membrane-bound complement inhibitors to protect apoptotic cells against excessive complement attack,” Journal of Biological Chemistry, vol. 282, no. 39, pp. 28540–28548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. J. Ma, A. Doni, T. Hummelshoj et al., “Synergy between ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28263–28275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Gout, C. Moriscot, A. Doni et al., “M-ficolin interacts with the long pentraxin PTX3: a novel case of cross-talk between soluble pattern-recognition molecules,” Journal of Immunology, vol. 186, no. 10, pp. 5815–5822, 2011. View at Publisher · View at Google Scholar
  54. C. Garianda, E. Hirsch, S. Bozza et al., “Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response,” Nature, vol. 420, no. 6912, pp. 182–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Jeannin, B. Bottazzi, M. Sironi et al., “Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors,” Immunity, vol. 22, no. 5, pp. 551–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Cotena, V. Maina, M. Sironi et al., “Complement dependent amplification of the innate response to a cognate microbial ligand by the long pentraxin PTX3,” Journal of Immunology, vol. 179, no. 9, pp. 6311–6317, 2007. View at Google Scholar · View at Scopus
  57. A. C. Soares, D. G. Souza, V. Pinho et al., “Dual function of the long pentraxin PTX3 in resistance against pulmonary infection with Klebsiella pneumoniae in transgenic mice,” Microbes and Infection, vol. 8, no. 5, pp. 1321–1329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. B. H. Segal, “Aspergillosis,” The New England Journal of Medicine, vol. 360, no. 18, pp. 1870–1884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. I. Gallin and K. Zarember, “Lessons about the pathogenesis and management of aspergillosis from studies in chronic granulomatous disease,” Transactions of the American Clinical and Climatological Association, vol. 118, pp. 175–185, 2007. View at Google Scholar · View at Scopus
  60. F. Moalli, A. Doni, L. Deban et al., “Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus,” Blood, vol. 116, no. 24, pp. 5170–5180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. McGeachy and D. J. Cua, “The link between IL-23 and Th17 cell-mediated immune pathologies,” Seminars in Immunology, vol. 19, no. 6, pp. 372–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Montagnoli, F. Fallarino, R. Gaziano et al., “Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism,” Journal of Immunology, vol. 176, no. 3, pp. 1712–1723, 2006. View at Google Scholar · View at Scopus
  64. T. Zelante, A. De Luca, P. Bonifazi et al., “IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance,” European Journal of Immunology, vol. 37, no. 10, pp. 2695–2706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. K. Tadagavadi, W. Wang, and G. Ramesh, “Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury,” Journal of Immunology, vol. 185, no. 6, pp. 3750–3758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. C. D'Angelo, A. De Luca, T. Zelante et al., “Exogenous pentraxin 3 restores antifungal resistance and restrains inflammation in murine chronic granulomatous disease,” Journal of Immunology, vol. 183, no. 7, pp. 4609–4618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Zhou, A. K. Robertson, C. Hjerpe, and G. K. Hansson, “Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4, pp. 864–870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Erbel, L. Chen, F. Bea et al., “Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice,” Journal of Immunology, vol. 183, no. 12, pp. 8167–8175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. J. Xie, J. Wang, T. T. Tang et al., “The Th17/Treg functional imbalance during atherogenesis in ApoE(−/−) mice,” Cytokine, vol. 49, no. 2, pp. 185–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Cheng, X. Yu, Y. J. Ding et al., “The Th17/Treg imbalance in patients with acute coronary syndrome,” Clinical Immunology, vol. 127, no. 1, pp. 89–97, 2009. View at Google Scholar · View at Scopus
  74. S. Hashmi and Q. T. Zeng, “Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease,” Coronary Artery Disease, vol. 17, no. 8, pp. 699–706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human TH17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Abraham and J. Cho, “Interleukin-23/Th17 pathways and inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 15, no. 7, pp. 1090–1100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Wakashin, K. Hirose, I. Iwamoto, and H. Nakajima, “Role of IL-23-Th17 cell axis in allergic airway inflammation,” International Archives of Allergy and Immunology, vol. 149, supplement 1, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells,” Nature Immunology, vol. 8, no. 6, pp. 639–646, 2007. View at Publisher · View at Google Scholar · View at Scopus