Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 164202, 13 pages
http://dx.doi.org/10.1155/2013/164202
Research Article

Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice

1Laboratório de ImunoFarmacologia Experimental (LIFE), Universidade Federal do Triângulo Mineiro (UFTM), Departamento de Clínica Médica, Instituto de Ciências da Saúde, Uberaba MG, Brazil
2Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
3Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
4Departamento de Clínica Médica, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil

Received 12 November 2012; Accepted 23 December 2012

Academic Editor: Nina Ivanovska

Copyright © 2013 Daniely Cornélio Favarin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Matthay, L. B. Ware, and G. A. Zimmerman, “The acute respiratory distress syndrome,” The Journal of Clinical Investigation, vol. 122, no. 8, pp. 2731–2740, 2012. View at Publisher · View at Google Scholar
  2. A. J. Walkey, R. Summer, V. Ho, and P. Alkana, “Acute respiratory distress syndrome: epidemiology and management approaches,” Clinical Epidemiology, vol. 4, pp. 159–169, 2012. View at Google Scholar
  3. J. Grommes and O. Soehnlein, “Contribution of neutrophils to acute lung injury,” Molecular Medicine, vol. 17, no. 3-4, pp. 293–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Cepkova and M. A. Matthay, “Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome,” Journal of Intensive Care Medicine, vol. 21, no. 3, pp. 119–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Petrucci and W. Iacovelli, “Ventilation with lower tidal volumes versus traditional tidal volumes in adults for acute lung injury and acute respiratory distress syndrome,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD003844, 2004. View at Google Scholar
  6. J. B. Calixto, A. Beirith, J. Ferreira, A. R. Santos, V. C. Filho, and R. A. Yunes, “Naturally occurring antinociceptive substances from plants,” Phytotherapy Research, vol. 14, no. 6, pp. 401–418, 2000. View at Google Scholar
  7. J. B. Calixto, M. M. Campos, M. F. Otuki, and A. R. S. Santos, “Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules,” Planta Medica, vol. 70, no. 2, pp. 93–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Seelinger, I. Merfort, and C. M. Schempp, “Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin,” Planta Medica, vol. 74, no. 14, pp. 1667–1677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Cerdá, F. A. Tomás-Barberán, and J. C. Espín, “Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability,” Journal of Agricultural and Food Chemistry, vol. 53, no. 2, pp. 227–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Barta, P. Smerak, Z. Polivknova et al., “Current trends and perspectives in nutrition and cancer prevention,” Neoplasma, vol. 53, no. 1, pp. 19–25, 2006. View at Google Scholar
  11. A. P. Rogerio, C. Fontanari, M. C. C. Melo et al., “Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid,” Journal of Pharmacy and Pharmacology, vol. 58, no. 9, pp. 1265–1273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Murugan, K. Mukherjee, K. Maiti, and P. K. Mukherjee, “Enhanced oral bioavailability and antioxidant profile of ellagic acid by phospholipids,” Journal of Agricultural and Food Chemistry, vol. 57, no. 11, pp. 4559–4565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Bell and S. Hawthorne, “Ellagic acid, pomegranate and prostate cancer—a mini review,” Journal of Pharmacy and Pharmacology, vol. 60, no. 2, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. H. Choi and G. H. Yan, “Ellagic acid attenuates immunoglobulin e-mediated allergic response in mast cells,” Biological and Pharmaceutical Bulletin, vol. 32, no. 6, pp. 1118–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Rogerio, C. Fontanari, E. Borducchi et al., “Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma,” European Journal of Pharmacology, vol. 580, no. 1-2, pp. 262–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. P. Rogerio, A. Sá-Nunes, and L. H. Faccioli, “The activity of medicinal plants and secondary metabolites on eosinophilic inflammation,” Pharmacological Research, vol. 62, no. 4, pp. 298–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bachoual, W. Talmoudi, T. Boussetta, F. Braut, and J. El-Benna, “An aqueous pomegranate peel extract inhibits neutrophil myeloperoxidase in vitro and attenuates lung inflammation in mice,” Food and Chemical Toxicology, vol. 49, no. 6, pp. 1224–1228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Fukunaga, P. Kohli, C. Bonnans, L. E. Fredenburgh, and B. D. Levy, “Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury,” Journal of Immunology, vol. 174, no. 8, pp. 5033–5039, 2005. View at Google Scholar · View at Scopus
  19. C. L. Su, D. W. Yuan, L. L. Chiang, H. L. Lee, K. H. Chen, and D. Wang, “Inducible cyclooxygenase expression mediating hypoxia/reoxygenation-induced pulmonary vasoconstriction is attenuated by a cyclooxygenase inhibitor in rats,” Transplantation Proceedings, vol. 44, no. 4, pp. 929–932, 2012. View at Publisher · View at Google Scholar
  20. J. Reutershan, M. A. Morris, T. L. Burcin et al., “Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 695–702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Yingli, L. Jonathan, Y. M. Angelo, R. L. Alan, and Xiangdong Zhu, “Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury,” Respiratory Research, vol. 18, no. 13, article 4, 2012. View at Google Scholar
  22. J. M. Schwab, N. Chiang, M. Arita, and C. N. Serhan, “Resolvin E1 and protectin D1 activate inflammation-resolution programmes,” Nature, vol. 447, no. 7146, pp. 869–874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Bhargava and C. H. Wendt, “Biomarkers in acute lung injury,” Translational Research, vol. 159, pp. 205–217, 2012. View at Publisher · View at Google Scholar
  24. R. P. Baughman, K. L. Gunther, M. C. Rashkin, D. A. Keeton, and E. N. Pattishall, “Changes in the inflammatory response of the lung during acute respiratory distress syndrome: prognostic indicators,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 1, pp. 76–81, 1996. View at Google Scholar · View at Scopus
  25. J. Grommes, S. Vijayan, M. Drechsler et al., “Simvastatin reduces endotoxin-induced acute lung,” Plos One, vol. 7, no. 6, Article ID e38917, 2012. View at Google Scholar
  26. C. M. Yamashita and J. F. Lewis, “Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome,” Expert Opinion on Emerging Drugs, vol. 17, no. 1, pp. 1–4, 2012. View at Google Scholar
  27. A. Ouachrif, H. Khalki, S. Chaib et al., “Comparative study of the anti-inflammatory and antinociceptive effects of two varieties of Punica granatum,” Pharmaceutical Biology, vol. 50, no. 4, pp. 429–438, 2012. View at Google Scholar
  28. S. U. Mertens-Talcott, P. Jilma-Stohlawetz, J. Rios, L. Hingorani, and H. Derendorf, “Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers,” Journal of Agricultural and Food Chemistry, vol. 54, no. 23, pp. 8956–8961, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Shukla, K. Gupta, Z. Rasheed, K. A. Khan, and T. M. Haqqi, “Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis,” Nutrition, vol. 24, no. 7-8, pp. 733–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Rosillo, M. Sanchez-Hidalgo, A. Cardeno, and A. C. de la Lastra, “Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn's disease,” Biochemical Pharmacology, vol. 82, no. 7, pp. 737–745, 2011. View at Publisher · View at Google Scholar
  31. M. A. Rosillo, M. Sanchez-Hidalgo, A. Cardeno et al., “Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats,” Pharmacological Research, vol. 66, no. 3, pp. 235–242, 2012. View at Publisher · View at Google Scholar
  32. B. Doyle and L. A. Griffiths, “The metabolism of ellagic acid in the rat,” Xenobiotica, vol. 10, no. 4, pp. 247–256, 1980. View at Google Scholar · View at Scopus
  33. R. W. Teel and R. M. Martin, “Disposition of the plant phenol ellagic acid in the mouse following oral administration by gavage,” Xenobiotica, vol. 18, no. 4, pp. 397–405, 1988. View at Google Scholar · View at Scopus
  34. A. C. Whitley, G. D. Stoner, M. V. Darby, and T. Walle, “Intestinal epithelial cell accumulation of the cancer preventive polyphenol ellagic acid—extensive binding to protein and DNA,” Biochemical Pharmacology, vol. 66, no. 6, pp. 907–915, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. González-Sarrías, M. Larrosa, F. A. Toms-Barberán, P. Dolara, and J. C. Espín, “NF-κB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts,” British Journal of Nutrition, vol. 104, no. 4, pp. 503–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. Espín, R. González-Barrio, B. Cerdá, C. López-Bote, A. I. Rey, and F. A. Tomás-Barberán, “Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans,” Journal of Agricultural and Food Chemistry, vol. 55, no. 25, pp. 10476–10485, 2007. View at Publisher · View at Google Scholar
  37. M. Larrosa, A. Gonzalez-Sarrias, M. J. Yanez-Gascon et al., “Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism,” The Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 717–725, 2010. View at Publisher · View at Google Scholar
  38. M. Larrosa, M. T. García-Conesa, J. C. Espín, and F. A. Tomás-Barberán, “Ellagitannins, ellagic acid and vascular health,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 513–539, 2010. View at Publisher · View at Google Scholar
  39. M. Boukharta, G. Jalbert, and A. Castonguay, “Biodistribution of ellagic acid and dose-related inhibition of lung tumorigenesis in A/J mice,” Nutrition and Cancer, vol. 18, no. 2, pp. 181–189, 1992. View at Google Scholar · View at Scopus
  40. R. M. Strieter and S. L. Kunkel, “Acute lung injury: the role of cytokines in the elicitation of neutrophils,” Journal of Investigative Medicine, vol. 42, no. 4, pp. 640–651, 1994. View at Google Scholar · View at Scopus
  41. H. Kubo, N. A. Doyle, L. Graham, S. D. Bhagwan, W. M. Quinlan, and C. M. Doerschuk, “L- and P-selectin and CD11/CD18 in intracapillary neutrophil sequestration in rabbit lungs,” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 1, pp. 267–274, 1999. View at Google Scholar · View at Scopus
  42. M. L. Handel, “Transcription factors AP-1 and NF-κB: where steroids meet the gold standard of anti-rheumatic drugs,” Inflammation Research, vol. 46, no. 8, pp. 282–286, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Eickmeier, H. Seki, O. Haworth et al., “Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury,” Mucosal Immunology, 2012. View at Publisher · View at Google Scholar
  44. S. Umesalma and G. Sudhandiran, “Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-κB, iNOS, COX-2, TNF-α, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis,” Basic and Clinical Pharmacology and Toxicology, vol. 107, no. 2, pp. 650–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Rohleder, M. Aringer, and M. Boentert, “Role of interleukin-6 in stress, sleep, and fatigue,” Annals of the New York Academy of Sciences, vol. 1261, pp. 88–96, 2012. View at Publisher · View at Google Scholar
  46. M. Saraiva and A. O'Garra, “The regulation of IL-10 production by immune cells,” Nature Reviews Immunology, vol. 10, pp. 170–181, 2010. View at Publisher · View at Google Scholar
  47. A. P. Rogerio, A. Sá-Nunes, D. A. Albuquerque et al., “Lafoensia pacari extract inhibits IL-5 production in toxocariasis,” Parasite Immunology, vol. 25, no. 7, pp. 393–400, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. P. Rogerio, A. Sá-Nunes, D. A. Albuquerque, E. G. Soares, and L. H. Faccioli, “Anti-eosinophilic effect of Lafoensia pacari in toxocariasis,” Phytomedicine, vol. 15, no. 5, pp. 348–357, 2008. View at Publisher · View at Google Scholar · View at Scopus