Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 198193, 8 pages
http://dx.doi.org/10.1155/2013/198193
Research Article

Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

1Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes 1730, ICB IV—Sala 140/146, 05508-900 Sao Paulo, SP, Brazil
2BHF-Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK

Received 2 June 2013; Accepted 22 July 2013

Academic Editor: Ishak Tekin

Copyright © 2013 Francisco J. Rios et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. K. Hansson, A. K. Robertson, and C. Soderberg-Naucler, “Inflammation and atherosclerosis,” Annual Review of Pathology, vol. 1, pp. 297–329, 2006. View at Publisher · View at Google Scholar
  2. D. F. J. Ketelhuth and G. K. Hansson, “Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall,” Thrombosis and Haemostasis, vol. 106, no. 5, pp. 779–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Bouhlel, B. Derudas, E. Rigamonti et al., “PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties,” Cell Metabolism, vol. 6, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Stoger, M. J. Gijbels, S. van der Velden et al., “Distribution of macrophage polarization markers in human atherosclerosis,” Atherosclerosis, vol. 225, no. 2, pp. 461–468, 2012. View at Publisher · View at Google Scholar
  6. J. Oh, A. E. Riek, S. Weng et al., “Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation,” The Journal of Biological Chemistry, vol. 287, no. 15, pp. 11629–11641, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. F. J. O. Rios, M. M. Koga, M. Ferracini, and S. Jancar, “Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation,” PLoS ONE, vol. 7, no. 5, Article ID e36632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Q. Davies and S. Gordon, “Isolation and culture of murine macrophages,” Methods in Molecular Biology, vol. 290, pp. 91–103, 2005. View at Google Scholar · View at Scopus
  9. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. F. J. O. Rios, S. Jancar, I. B. Melo, D. F. J. Ketelhuth, and M. Gidlund, “Role of PPAR-γ in the modulation of CD36 and FcγRII induced by LDL with low and high degrees of oxidation during the differentiation of the monocytic THP-1 cell line,” Cellular Physiology and Biochemistry, vol. 22, no. 5-6, pp. 549–556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Chatterjee, J. A. Berliner, G. G. Subbanagounder, A. K. Bhunia, and S. Koh, “Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation,” Glycoconjugate Journal, vol. 20, no. 5, pp. 331–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Hevonoja, M. O. Pentikäinen, M. T. Hyvönen, P. T. Kovanen, and M. Ala-Korpela, “Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL,” Biochimica et Biophysica Acta, vol. 1488, no. 3, pp. 189–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Y. Han and Y. K. Pak, “Oxidation-dependent effects of oxidized LDL: proliferation or cell death,” Experimental and Molecular Medicine, vol. 31, no. 4, pp. 165–173, 1999. View at Google Scholar · View at Scopus
  14. J. P. Gaut and J. W. Heinecke, “Mechanisms for oxidizing low-density lipoprotein: insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis,” Trends in Cardiovascular Medicine, vol. 11, no. 3-4, pp. 103–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Itabe, “Oxidized phospholipids as a new landmark in atherosclerosis,” Progress in Lipid Research, vol. 37, no. 2-3, pp. 181–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. I. Dueñas, M. Aceves, I. Fernández-Pisonero et al., “Selective attenuation of toll-like receptor 2 signalling may explain the atheroprotective effect of sphingosine 1-phosphate,” Cardiovascular Research, vol. 79, no. 3, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. A. Walton, A. L. Cole, M. Yeh et al., “Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1197–1203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. F. J. Ketelhuth, F. J. O. Rios, Y. Wang et al., “Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses,” Circulation, vol. 124, no. 22, pp. 2433–2443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Gallardo-Soler, C. Gómez-Nieto, M. L. Campo et al., “Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity,” Molecular Endocrinology, vol. 22, no. 6, pp. 1394–1402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Ryoo, C. A. Lemmon, K. G. Soucy et al., “Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling,” Circulation Research, vol. 99, no. 9, pp. 951–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. F. J. O. Rios, M. Gidlund, and S. Jancar, “Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages,” Cellular Physiology and Biochemistry, vol. 27, no. 3-4, pp. 363–372, 2011. View at Publisher · View at Google Scholar · View at Scopus