Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 231351, 13 pages
http://dx.doi.org/10.1155/2013/231351
Research Article

Lipoxin A4 Preconditioning and Postconditioning Protect Myocardial Ischemia/Reperfusion Injury in Rats

1Department of Cardiovascular and Thoracic Surgery, The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, 109 College Western Road, Wenzhou 325027, China
2Department of Cardiovascular Medicine, The 2nd Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, 109 College Western Road, Wenzhou 325027, China

Received 10 April 2013; Revised 15 June 2013; Accepted 16 June 2013

Academic Editor: Fulvio D'Acquisto

Copyright © 2013 Qifeng Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Hoffman Jr., T. B. Gilbert, R. S. Poston, and E. P. Silldorff, “Myocardial reperfusion injury: etiology, mechanisms, and therapies,” Journal of Extra-Corporeal Technology, vol. 36, no. 4, pp. 391–411, 2004. View at Google Scholar · View at Scopus
  2. S. R. J. Maxwell and G. Y. H. Lip, “Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options,” International Journal of Cardiology, vol. 58, no. 2, pp. 95–117, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Park and B. R. Lucchesi, “Mechanisms of myocardial reperfusion injury,” Annals of Thoracic Surgery, vol. 68, no. 5, pp. 1905–1912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. N. Serhan, M. Hamberg, and B. Samuelsson, “Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 17, pp. 5335–5339, 1984. View at Google Scholar · View at Scopus
  5. C. N. Serhan, N. Chiang, and T. E. van Dyke, “Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators,” Nature Reviews Immunology, vol. 8, no. 5, pp. 349–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Scully, C. Gang, C. Condron, D. Bouchier-Hayes, and A. J. Cunningham, “Protective role of cyclooxygenase (COX)-2 in experimental lung injury: evidence of a lipoxin A4-mediated effect,” Journal of Surgical Research, vol. 175, no. 1, pp. 176–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. X.-Y. Zhou, P. Wu, L. Zhang et al., “Effects of lipoxin A4 on lipopolysaccharide induced proliferation and reactive oxygen species production in RAW264.7 macrophages through modulation of G-CSF secretion,” Inflammation Research, vol. 56, no. 8, pp. 324–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. N. Lee, H. K. Na, and Y. J. Surh, “Resolution of inflammation as a novel chemopreventive strategy,” Seminars in Immunopathology, vol. 35, no. 2, pp. 151–161, 2013. View at Google Scholar
  9. Y. Isobe, T. Kato, and M. Arita, “Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation,” Frontiers in Immunology, vol. 3, article 270, 2012. View at Google Scholar
  10. Y. Ye, J. R. Perez-Polo, D. Aguilar, and Y. Birnbaum, “The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury,” Basic Research in Cardiology, vol. 106, no. 6, pp. 925–952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. M. Peskar, K. Ehrlich, R. Schuligoi, and B. A. Peskar, “Role of lipoxygenases and the lipoxin A4/annexin 1 receptor in ischemia-reperfusion-induced gastric mucosal damage in rats,” Pharmacology, vol. 84, no. 5, pp. 294–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Wu, S. Miao, L. B. Zou et al., “Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury,” Journal of Molecular Neuroscience, vol. 48, no. 1, pp. 185–200, 2012. View at Google Scholar
  13. D. G. Souza, C. T. Fagundes, F. A. Amaral et al., “The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice,” Journal of Immunology, vol. 179, no. 12, pp. 8533–8543, 2007. View at Google Scholar · View at Scopus
  14. L. Testai, A. Martelli, A. Marino et al., “The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury,” Biochemical Pharmacology, vol. 85, no. 11, pp. 1634–1643, 2013. View at Google Scholar
  15. J. Zhang and E. Gong, “The protective effect of ginkgo flavonoids phospholipid complex on vascular endothelial in myocardial reperfusion injury in rats,” Journal of Mathematical Medicine, vol. 22, no. 1, pp. 15–18, 2009. View at Google Scholar
  16. J. Y. Wen, N. Tan, and D. H. Yang, “Electrocardiogram changes on myocardial ischemia-reperfusion model in rats,” South China Journal of Cardiovascular Diseases, vol. 17, no. 6, pp. 503–506, 2011. View at Google Scholar
  17. M. J. A. Walker, M. J. Curtis, D. J. Hearse et al., “The Lambeth conventions: guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion,” Cardiovascular Research, vol. 2, no. 7, pp. 447–455, 1988. View at Google Scholar · View at Scopus
  18. A. F. Bruce, S. Rothery, E. Dupont, and N. J. Severs, “Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1,” Cardiovascular Research, vol. 77, no. 4, pp. 757–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Tratsiakovich, A. T. Gonon, A. Krook et al., “Arginase inhibition reduces infarct size via nitric oxide, protein kinase C epsilon and mitochondrial ATP-dependent K+ channels,” European Journal of Pharmacology, vol. 712, no. 1–3, pp. 16–21, 2013. View at Google Scholar
  20. M. M. Zhao, J. Y. Yang, X. B. Wang, C. S. Tang, J. B. Du, and H. F. Jin, “The PI3K/Akt pathway mediates the protection of SO(2) preconditioning against myocardial ischemia/reperfusion injury in rats,” Acta Pharmacologica Sinica, vol. 34, no. 4, pp. 501–506, 2013. View at Google Scholar
  21. D. El Kebir, L. József, W. Pan et al., “15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 4, pp. 311–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Baker, S. J. O'Meara, M. Scannell, P. Maderna, and C. Godson, “Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells,” Journal of Immunology, vol. 182, no. 6, pp. 3819–3826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. N. Krause, S. P. Duckles, and D. A. Pelligrino, “Influence of sex steroid hormones on cerebrovascular function,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1252–1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Belliard, Y. Sottejeau, Q. Duan, J. L. Karabin, and S. V. Pierre, “Modulation of cardiac Na+-K+-ATPase cell surface abundance by simulated ischemia/reperfusion and ouabain preconditioning,” American Journal of Physiology, vol. 304, no. 1, pp. H94–H103, 2013. View at Google Scholar
  25. J. Zheng, X. Koh, F. Hua, G. Li, J. W. Larrick, and J. Bian, “Cardioprotection induced by Na+/K+-ATPase activation involves extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt pathway,” Cardiovascular Research, vol. 89, no. 1, pp. 51–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Guo, F. Guo, L. Zhang et al., “Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury,” American Journal of Physiology, vol. 300, no. 6, pp. H2280–H2287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. N. Khalil, C. Neuhof, R. Huss et al., “Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model,” European Journal of Pharmacology, vol. 528, no. 1–3, pp. 124–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. S. Haddock, M. J. Shattock, and D. J. Hearse, “Modulation of cardiac Na+-K+ pump current: role of protein and nonprotein sulfhydryl redox status,” American Journal of Physiology, vol. 269, no. 1, part 2, pp. H297–H307, 1995. View at Google Scholar · View at Scopus
  29. G. A. Figtree, G. K. Karimi, C. C. Liu, and H. H. Rasmussen, “Oxidative regulation of the Na+-K+ pump in the cardiovascular system,” Free Radical Biology and Medicine, vol. 53, no. 12, pp. 2263–2268, 2012. View at Google Scholar
  30. N. J. Severs, A. F. Bruce, E. Dupont, and S. Rothery, “Remodelling of gap junctions and connexin expression in diseased myocardium,” Cardiovascular Research, vol. 80, no. 1, pp. 9–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Hervé and M. Derangeon, “Gap-junction-mediated cell-to-cell communication,” Cell and Tissue Research, vol. 352, no. 1, pp. 21–31, 2013. View at Google Scholar
  32. J. W. Smyth, T. Hong, D. Gao et al., “Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium,” The Journal of Clinical Investigation, vol. 120, no. 1, pp. 266–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Janczarska, B. Kieć-Wilk, I. Leszczyńska-Gołabek, M. Malczewska-Malec, and M. Bodzioch, “The role of connexin 43 in preconditioning. Impact on mitochondrial function,” Kardiologia Polska, vol. 68, no. 1, pp. 91–96, 2010. View at Google Scholar · View at Scopus
  34. R. Papp, M. Gönczi, M. Kovács, G. Seprényi, and A. Végh, “Gap junctional uncoupling plays a trigger role in the antiarrhythmic effect of ischaemic preconditioning,” Cardiovascular Research, vol. 74, no. 3, pp. 396–405, 2007. View at Google Scholar
  35. X. F. Figueroa and B. R. Duling, “Gap junctions in the control of vascular function,” Antioxidants and Redox Signaling, vol. 11, no. 2, pp. 251–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Adesse, L. R. Garzoni, H. Huang, H. B. Tanowitz, M. D. Meirelles, and D. C. Spray, “Trypanosoma cruzi induces changes in cardiac connexin43 expression,” Microbes and Infection, vol. 10, no. 1, pp. 21–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Cabo, J. Yao, P. A. Boyden et al., “Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct,” Cardiovascular Research, vol. 72, no. 2, pp. 241–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. B. Danik, G. Rosner, J. Lader, D. E. Gutstein, G. I. Fishman, and G. E. Morley, “Electrical remodeling contributes to complex tachyarrhythmias in connexin43-deficient mouse hearts,” The FASEB Journal, vol. 22, no. 4, pp. 1204–1212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. S. C. Fontes, T. A. B. van Veen, J. M. T. de Bakker, and H. V. M. van Rijen, “Functional consequences of abnormal Cx43 expression in the heart,” Biochimica et Biophysica Acta, vol. 1818, no. 8, pp. 2020–2029, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Penna, M. Perrelli, S. Raimondo et al., “Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts,” Biochimica et Biophysica Acta, vol. 1787, no. 7, pp. 794–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. L. Harris, “Connexin channel permeability to cytoplasmic molecules,” Progress in Biophysics and Molecular Biology, vol. 94, no. 1-2, pp. 120–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Miura, Y. Ohnuma, A. Kuno et al., “Protective role of gap junctions in preconditioning against myocardial infarction,” American Journal of Physiology, vol. 286, no. 1, pp. H214–H221, 2004. View at Google Scholar · View at Scopus
  43. E. Scemes, D. C. Spray, and P. Meda, “Connexins, pannexins, innexins: novel roles of ‘hemi-channels’,” Pflugers Archiv European Journal of Physiology, vol. 457, no. 6, pp. 1207–1226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. García-Dorado, A. Rodríguez-Sinovas, and M. Ruiz-Meana, “Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion,” Cardiovascular Research, vol. 61, no. 3, pp. 386–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Kanno, A. Kovacs, K. A. Yamada, and J. E. Saffitz, “Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice,” Journal of the American College of Cardiology, vol. 41, no. 4, pp. 681–686, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Johansen, E. Sanden, M. Hagve, X. Chu, R. Sundset, and K. Ytrehus, “Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts,” Acta Physiologica, vol. 201, no. 4, pp. 435–444, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Ye, J. Qian, A. C. Castillo et al., “Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes,” American Journal of Physiology, vol. 304, no. 1, pp. H131–H141, 2013. View at Google Scholar
  48. Z. Chen, Z. Wu, C. Huang et al., “Effect of lipoxin A4 on myocardial ischemia reperfusion injury following cardiac arrest in a rabbit model,” Inflammation, vol. 36, no. 2, pp. 468–475, 2013. View at Google Scholar