Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 279365, 8 pages
http://dx.doi.org/10.1155/2013/279365
Review Article

Can High Altitude Influence Cytokines and Sleep?

1Departamento de Psicobiologia, Campus São Paulo, UNIFESP, Rua Botucatu 862, Vila Clementino, São Paulo, SP, Brazil
2Centro de Estudos em Psicobiologia e Exercício, (CEPE), São Paulo, SP, Brazil
3Departamento de Biociências, Campus da Baixada Santista, UNIFESP, Avenida Almirante Saldanha da Gama, 89, Ponta da Praia, 11030-400 Santos, SP, Brazil
4Centro de Estudos em Psicobiologia e Exercício, UNIFESP, Rua Professor Francisco de Castro 04020-050, 93, Vila Clementino, São Paulo, SP, Brazil
5Laboratório do Movimento Humano, Universidade São Judas Tadeu, São Paulo, SP, Brazil
6Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil

Received 16 November 2012; Revised 27 February 2013; Accepted 21 March 2013

Academic Editor: Gustavo Duarte Pimentel

Copyright © 2013 Valdir de Aquino Lemos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Pollard, D. R. Murdoch, and P. Bartsch, “Children in the mountains,” British Medical Journal, vol. 316, no. 7135, pp. 874–875, 1998. View at Google Scholar · View at Scopus
  2. P. H. Hackett and R. C. Roach, “High-altitude illness,” New England Journal of Medicine, vol. 345, no. 2, pp. 107–114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Debudaj and R. Bobiński, “The pathophysiology of acute mountain sickness,” Polski Merkuriusz Lekarski, vol. 28, no. 168, pp. 478–481, 2010. View at Google Scholar · View at Scopus
  4. A. M. Luks, S. E. McIntosh, C. K. Grissom et al., “Wilderness medical society consensus guidelines for the prevention and treatment of acute altitude illness,” Wilderness and Environmental Medicine, vol. 21, no. 2, pp. 146–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Imray, A. Wright, A. Subudhi, and R. Roach, “Acute mountain sickness: pathophysiology, prevention, and treatment,” Progress in Cardiovascular Diseases, vol. 52, no. 6, pp. 467–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. V. De Aquino Lemos, H. K. Antunes, R. V. Santos, F. S. Lira, S. Tufik, and M. T. Mello, “High altitude exposure impairs sleep patterns, moos and cognitive functions,” Psychophysiology, vol. 49, no. 9, pp. 1298–1306, 2012. View at Publisher · View at Google Scholar
  7. V. A. Lemos, H. K. M. Antunes, R. V. T. Dos Santos, J. M. D. S. Prado, S. Tufik, and M. T. De Mello, “Effects of exposure to altitude on neuropsychology aspects: a literature review,” Revista Brasileira de Psiquiatria, vol. 32, no. 1, pp. 70–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Virués-Ortega, E. C. Garrido, K. C. Javierre, and K. C. Kloezeman, “Human behaviour and development under high-altitude conditions,” Developmental Science, vol. 9, no. 4, pp. 400–410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Gore, S. A. Clark, and P. U. Saunders, “Nonhematological mechanisms of improved sea-level performance after hypoxic exposure,” Medicine and Science in Sports and Exercise, vol. 39, no. 9, pp. 1600–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Napoli, D. P. Milzman, J. A. Damergis, and J. Machan, “Physiologic affects of altitude on recreational climbers,” American Journal of Emergency Medicine, vol. 27, no. 9, pp. 1081–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Koller, “Exercise-induced increases in cardiac troponins and prothrombotic markers,” Medicine and Science in Sports and Exercise, vol. 35, no. 3, pp. 444–448, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Mazzeo, “Altitude, exercise and immune function,” Exercise Immunology Review, vol. 11, pp. 6–16, 2005. View at Google Scholar · View at Scopus
  13. R. S. Mazzeo, A. Child, G. E. Butterfield et al., “Sympathoadrenal responses to submaximal exercise in women after acclimatization to 4,300 meters,” Metabolism, vol. 49, no. 8, pp. 1036–1042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Mazzeo, “Physiological responses to exercise at altitude: an update,” Sports Medicine, vol. 38, no. 1, pp. 1–8, 2008. View at Google Scholar · View at Scopus
  15. K. E. Barnholt, A. R. Hoffman, P. B. Rock et al., “Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction,” American Journal of Physiology-Endocrinology and Metabolism, vol. 290, no. 6, pp. E1078–E1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Niess, E. Fehrenbach, G. Strobel et al., “Evaluation of stress responses to interval training at low and moderate altitudes,” Medicine and Science in Sports and Exercise, vol. 35, no. 2, pp. 263–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Blegen, C. Cheatham, N. Caine-Bish, C. Woolverton, J. Marcinkiewicz, and E. Glickman, “The immunological and metabolic responses to exercise of varying intensities in normoxic and hypoxic environments,” Journal of Strength and Conditioning Research, vol. 22, no. 5, pp. 1638–1644, 2008. View at Google Scholar · View at Scopus
  18. C. D. Thake, T. Mian, A. W. Garnham, and R. Mian, “Leukocyte counts and neutrophil activity during 4 h of hypocapnic hypoxia equivalent to 4000 m,” Aviation Space and Environmental Medicine, vol. 75, no. 9, pp. 811–817, 2004. View at Google Scholar · View at Scopus
  19. B. K. Pedersen and A. Steensberg, “Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms?” Medicine and Science in Sports and Exercise, vol. 34, no. 12, pp. 2004–2012, 2002. View at Google Scholar · View at Scopus
  20. C. C. Caldwell, H. Kojima, D. Lukashev et al., “Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions,” Journal of Immunology, vol. 167, no. 11, pp. 6140–6149, 2001. View at Google Scholar · View at Scopus
  21. M. Facco, C. Zilli, M. Siviero et al., “Modulation of immune response by the acute and chronic exposure to high altitude,” Medicine and Science in Sports and Exercise, vol. 37, no. 5, pp. 768–774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Hartmann, M. Tschöp, R. Fischer et al., “High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein,” Cytokine, vol. 12, no. 3, pp. 246–252, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Dosek, H. Ohno, Z. Acs, A. W. Taylor, and Z. Radak, “High altitude and oxidative stress,” Respiratory Physiology and Neurobiology, vol. 158, no. 2-3, pp. 128–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. I. Moldoveanu, R. J. Shephard, and P. N. Shek, “The cytokine response to physical activity and training,” Sports Medicine, vol. 31, no. 2, pp. 115–144, 2001. View at Google Scholar · View at Scopus
  25. S. Lahiri, C. Di Giulio, and A. Roy, “Lessons from chronic intermittent and sustained hypoxia at high altitudes,” Respiratory Physiology and Neurobiology, vol. 130, no. 3, pp. 223–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. Mortola and E. L. Seifert, “Hypoxic depression of circadian rhythms in adult rats,” Journal of Applied Physiology, vol. 88, no. 2, pp. 365–368, 2000. View at Google Scholar · View at Scopus
  27. C. T. Taylor, “Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation,” Journal of Physiology, vol. 1, no. 586, part 17, pp. 4055–4059, 2008. View at Google Scholar
  28. R. S. Mazzeo, “Altitude, exercise and immune function,” Exercise Immunology Review, vol. 11, no. 6, p. 16, 2005. View at Google Scholar
  29. D. De Gonzalo-Calvo, K. Neitzert, M. Fernández et al., “Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers,” Free Radical Biology & Medicine, vol. 149, no. 5, pp. 733–737, 2010. View at Google Scholar
  30. S. K. S. Sarada, P. H. Veeramohan, T. Mathew, S. Saumya, and M. Chitharanjan, “NIfedipine inhibits hypoxia induced transvascular leakage through down regulation of NFκB,” Respiratory Physiology & Neurobiology, vol. 183, no. 1, pp. 26–34, 2012. View at Publisher · View at Google Scholar
  31. N. Barbarroja, C. Lopez-Pedrera, L. Garrido-Sanchez et al., “Progression from high insulin resistance to type 2 diabetes does not entail additional visceral adipose tissue inflammation,” PLoS One, vol. 7, no. 10, Article ID e48155, 2012. View at Google Scholar
  32. E. Valassi, A. Klibanski, B. M. K. Biller, and M. Misra, “Adipokines and cardiovascular risk in Cushing's syndrome,” Neuroendocrinology, vol. 95, no. 3, pp. 187–206, 2012. View at Publisher · View at Google Scholar
  33. P. Hojman, S. Taudorf, C. Lundby, and B. K. Pedersen, “Erythropoietin augments the cytokine response to acute endotoxin-induced inflammation in humans,” Cytokine, vol. 45, no. 3, pp. 154–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Hojman, C. Brolin, H. Gissel et al., “Erythropoietin over-expression protects against diet-induced obesity in mice through increased fat oxidation in muscles,” PLoS ONE, vol. 4, no. 6, Article ID e5894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Turnbull and C. L. Rivier, “Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action,” Physiological Reviews, vol. 79, no. 1, pp. 1–71, 1999. View at Google Scholar · View at Scopus
  36. H. Y. Li, A. Ericsson, and P. E. Sawchenko, “Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2359–2364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Beyaert and W. Fiers, “Molecular mechanisms of tumor necrosis factor-induced cytotoxicity: what we do understand and what we do not,” FEBS Letters, vol. 340, no. 1-2, pp. 9–16, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Baes, W. Allaerts, and C. Denef, “Evidence for functional communication between folliculo-stellate cells and hormone-secreting cells in perifused anterior pituitary cell aggregates,” Endocrinology, vol. 120, no. 2, pp. 685–691, 1987. View at Google Scholar · View at Scopus
  39. F. S. Lira, J. C. Rosa, N. E. Zanchi et al., “Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise,” Cell Biochemistry and Function, vol. 27, no. 2, pp. 71–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. C. Rosa Neto, F. S. Lira, L. M. Oyama et al., “Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats,” European Journal of Applied Physiology, vol. 106, no. 5, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Basheer, R. E. Strecker, M. M. Thakkar, and R. W. McCarley, “Adenosine and sleep-wake regulation,” Progress in Neurobiology, vol. 73, no. 6, pp. 379–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Chen, G. F. Buchanan, J. M. Ding, J. Hannibal, and M. U. Gillette, “Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13468–13473, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Aubry, A. V. Turnbull, G. Pozzoli, C. Rivier, and W. Vale, “Endotoxin decreases corticotropin-releasing factor receptor 1 messenger ribonucleic acid levels in the rat pituitary,” Endocrinology, vol. 138, no. 4, pp. 1621–1626, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Bernhagen, T. Calandra, R. A. Mitchell et al., “MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia,” Nature, vol. 365, no. 6448, pp. 756–759, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. H. E. De Vries, M. C. M. Blom-Roosemalen, M. Van Oosten et al., “The influence of cytokines on the integrity of the blood-brain barrier in vitro,” Journal of Neuroimmunology, vol. 64, no. 1, pp. 37–43, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. L. R. Watkins, E. P. Wiertelak, L. E. Goehler et al., “Neurocircuitry of illness-induced hyperalgesia,” Brain Research, vol. 639, no. 2, pp. 283–299, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. M. R. Opp and L. A. Toth, “Somnogenic and pyrogenic effects of interleukin-1β and lipopolysaccharide in intact and vagotomized rats,” Life Sciences, vol. 62, no. 10, pp. 923–936, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Layé, R. M. Bluthe, S. Kent et al., “Subdiaphragmatic vagotomy blocks induction of IL-1β mRNA in mice brain in response to peripheral LPS,” American Journal of Physiology, vol. 268, no. 5, pp. R1327–R1331, 1995. View at Google Scholar · View at Scopus
  49. H. M. Kryger, T. Roth, and W. C. Dement, Principles and Prectice of Sleep Medicine, Elsevier, New York, NY, USA, 2005.
  50. G. W. Rodway, L. A. Huffman, and M. H. Sanders, “High-altitude-related disorders-part I: pathophysiology, differential diagnosis, and treatment,” Heart and Lung, vol. 32, no. 6, pp. 353–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. B. K. Pedersen, “The diseasome of physical inactivity and the role of myokines in muscle-fat cross talk,” Journal of Physiology, vol. 587, no. 23, pp. 5559–5568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. E. Gamaldo, A. K. Shaikh, and J. C. McArthur, “The sleep-immunity relationship,” Neurologic Clinics, vol. 30, no. 4, pp. 1313–1343, 2012. View at Publisher · View at Google Scholar
  53. M. C. Nicolau, M. Akaârir, A. Gamundí, J. González, and R. V. Rial, “Why we sleep: the evolutionary pathway to the mammalian sleep,” Progress in Neurobiology, vol. 62, no. 4, pp. 379–406, 2000. View at Publisher · View at Google Scholar
  54. H. Kalonia, M. Bishnoi, and A. Kumar, “Possible mechanism involved in sleep deprivation-induced memory dysfunction,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 30, no. 7, pp. 529–535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. Krueger, J. Fang, M. K. Hansen, J. Zhang, and F. Obál, “Humoral regulation of sleep,” News in Physiological Sciences, vol. 13, no. 4, pp. 189–194, 1998. View at Google Scholar · View at Scopus
  56. C. Iber, S. Ancoli-Israel, A. Chesson, and S. F. Quan, For The American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, American Academy of Sleep Medicine, Westchester, Ill, USA, 2007.
  57. M. H. Wilson, S. Newman, and C. H. Imray, “The cerebral effects of ascent to high altitudes,” The Lancet Neurology, vol. 8, no. 2, pp. 175–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Krueger, “The role of cytokines in sleep regulation,” Current Pharmaceutical Design, vol. 14, no. 32, pp. 3408–3416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Krueger, S. Takahashi, L. Kapas et al., “Cytokines in sleep regulation,” Advances in Neuroimmunology, vol. 5, no. 2, pp. 171–188, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. S. C. Veasey, C. W. Davis, P. Fenik et al., “Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions,” Sleep, vol. 27, no. 2, pp. 194–201, 2004. View at Google Scholar · View at Scopus
  61. H. Hamrahi, R. Stephenson, S. Mahamed, K. S. Liao, and R. L. Horner, “Physiological and genomic consequences of intermittent hypoxia: selected contribution: regulation of sleep-wake states in response to intermittent hypoxic stimuli applied only in sleep,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2490–2501, 2001. View at Google Scholar · View at Scopus
  62. S. Jafarian, F. Gorouhi, A. Taghva, and J. Lotfi, “High-altitude sleep disturbance: results of the Groningen sleep quality questionnaire survey,” Sleep Medicine, vol. 9, no. 4, pp. 446–449, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. J. Morrell, D. W. McRobbie, R. A. Quest, A. R. Cummin, R. Ghiassi, and D. R. Corfield, “Changes in brain morphology associated with obstructive sleep apnea,” Sleep Medicine, vol. 4, no. 5, pp. 451–454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Buguet, R. Cespuglio, and M. W. Radomski, “Sleep and stress in man: an approach through exercise and exposure to extreme environments,” Canadian Journal of Physiology and Pharmacology, vol. 76, no. 5, pp. 553–561, 1998. View at Google Scholar · View at Scopus
  65. K. R. Burgess, P. Johnson, N. Edwards, and J. Cooper, “Acute mountain sickness is associated with sleep desaturation at high altitude,” Respirology, vol. 9, no. 4, pp. 485–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. P. L. Johnson, N. Edwards, K. R. Burgess, and C. E. Sullivan, “Sleep architecture changes during a trek from 1400 to 5000 m in the Nepal Himalaya,” Journal of Sleep Research, vol. 19, no. 1, pp. 148–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Bosco, A. Ionadi, S. Panico et al., “Effects of hypoxia on the circadian patterns in men,” High Altitude Medicine & Biology, vol. 4, no. 3, pp. 305–318, 2003. View at Publisher · View at Google Scholar
  68. K. Kwarecki and J. Krawczyk, “Comparison of the circadian rhythm in cell proliferation in corneal epithelium of male rats studied under normal and hypobaric (hypoxic) conditions,” Chronobiology International, vol. 6, no. 3, pp. 217–222, 1989. View at Google Scholar · View at Scopus
  69. D. Chilov, T. Hofer, C. Bauer, R. H. Wenger, and M. Gassmann, “Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain,” FASEB Journal, vol. 15, no. 14, pp. 2613–2622, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Greenberg, X. Ye, D. Wilson, A. K. Htoo, T. Hendersen, and S. F. Liu, “Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo,” Biochemical and Biophysical Research Communications, vol. 343, no. 2, pp. 591–596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Gómez-González, E. Domínguez-Salazar, G. Hurtado-Alvarado et al., “Role of sleep in the regulation of the immune system and the pituitary hormones,” Annals of the New York Academy of Sciences, vol. 1261, pp. 97–106, 2012. View at Publisher · View at Google Scholar
  72. P. O. Kiratli, A. U. Demir, B. Volkan-Salanci, B. Demir, and A. Sahin, “Cerebral blood flow and cognitive function in obstructive sleep apnea syndrome,” Hellenic Journal of Nuclear Medicine, vol. 13, no. 2, pp. 138–143, 2010. View at Google Scholar · View at Scopus
  73. M. Reite, D. Jackson, R. L. Cahoon, and J. V. Weil, “Sleep physiology at high altitude,” Electroencephalography and Clinical Neurophysiology, vol. 38, no. 5, pp. 463–471, 1975. View at Publisher · View at Google Scholar
  74. M. Amann and B. Kayser, “Nervous system function during exercise in hypoxia,” High Altitude Medicine & Biology, vol. 10, no. 2, pp. 149–164, 2009. View at Publisher · View at Google Scholar
  75. T. A. Hagobian, K. A. Jacobs, A. W. Subudhi et al., “Cytokine response at high altitude: effects of exercise and antioxidants at 4300 m,” Medicine and Science in Sports and Exercise, vol. 38, no. 2, pp. 276–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Blegen, C. Cheatham, N. Caine-Bish, C. Woolverton, J. Marcinkiewicz, and E. Glickman, “The immunological and metabolic responses to exercise of varying intensities in normoxic and hypoxic environments,” Journal of Strength and Conditioning Research, vol. 22, no. 5, pp. 1638–1644, 2008. View at Google Scholar · View at Scopus
  77. A. M. Lane, P. C. Terry, M. J. Stevens, S. Barney, and S. L. Dinsdale, “Mood responses to athletic performance in extreme environments,” Journal of Sports Sciences, vol. 22, no. 10, pp. 886–897, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. N. P. Walsh, M. Gleeson, R. J. Shephard et al., “Position statement. Part one: immune function and exercise,” Exercise Immunology Review, vol. 17, pp. 6–63, 2011. View at Google Scholar
  79. B. L. Shukitt and L. E. Banderet, “Mood states at 1600 and 4300 meters terrestrial altitude,” Aviation Space and Environmental Medicine, vol. 59, no. 6, pp. 530–532, 1988. View at Google Scholar · View at Scopus