Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 285795, 6 pages
http://dx.doi.org/10.1155/2013/285795
Clinical Study

Aged Garlic Extract Improves Adiponectin Levels in Subjects with Metabolic Syndrome: A Double-Blind, Placebo-Controlled, Randomized, Crossover Study

1Dirección de Investigaciones, Fundación Oftalmológica de Santander (FOSCAL), Torre Milton Salazar, Primer Piso, Calle 155A No. 23-09, El Bosque, Floridablanca, Santander, Colombia
2Instituto de Investigaciones, Escuela de Medicina, Universidad de Santander (UDES), Bucaramanga, Colombia
3Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain

Received 10 January 2013; Accepted 31 January 2013

Academic Editor: Giuseppe Valacchi

Copyright © 2013 Diego Gómez-Arbeláez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Mottillo, K. B. Filion, J. Genest et al., “The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis,” Journal of the American College of Cardiology, vol. 56, no. 14, pp. 1113–1132, 2010. View at Publisher · View at Google Scholar
  3. E. S. Ford, W. H. Giles, and W. H. Dietz, “Prevalence of the metabolic syndrome among US adults: findings from the third national health and nutrition examination survey,” The Journal of the American Medical Association, vol. 287, no. 3, pp. 356–359, 2002. View at Google Scholar · View at Scopus
  4. C. Langenberg, J. Bergstrom, C. Scheidt-Nave, J. Pfeilschifter, and E. Barrett-Connor, “Cardiovascular death and the metabolic syndrome: role of adiposity-signaling hormones and inflammatory markers,” Diabetes Care, vol. 29, no. 6, pp. 1363–1369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Yudkin, “Inflammation, obesity, and the metabolic syndrome,” Hormone and Metabolic Research, vol. 39, no. 10, pp. 707–709, 2007. View at Publisher · View at Google Scholar
  6. M. Guerro-Millo, “Adipose tissue and adipokines: for better or worse,” Diabetes and Metabolism, vol. 30, no. 1, pp. 13–19, 2004. View at Google Scholar · View at Scopus
  7. B. Antuna-Puente, B. Feve, S. Fellahi, and J. P. Bastard, “Adipokines: the missing link between insulin resistance and obesity,” Diabetes and Metabolism, vol. 34, no. 1, pp. 2–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Rabe, M. Lehrke, K. G. Parhofer, and U. C. Broedl, “Adipokines and insulin resistance,” Molecular Medicine, vol. 14, no. 11-12, pp. 741–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Robinson, J. Prins, and B. Venkatesh, “Clinical review: adiponectin biology ant its role in inflammation and critical illness,” Critical Care, vol. 15, article 221, 2011. View at Publisher · View at Google Scholar
  10. C. Weyer, T. Funahashi, S. Tanaka et al., “Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hiperinsulinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 5, pp. 1930–1935, 2001. View at Publisher · View at Google Scholar
  11. N. de las Heras, B. Martín-Fernández, M. Miana et al., “The protective effect of irbesartan in rats fed a high-fat diet is associated with modification of leptin-adiponectin imbalance,” Journal of Hypertension, Supplement, vol. 27, supplement 6, pp. 37–41, 2009. View at Google Scholar
  12. K. K. Koh, I. Sakuma, and M. J. Quon, “Differential metabolic effects of distinct statins,” Atherosclerosis, vol. 215, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Nagamia, A. Pandian, F. Cheema et al., “The role of quinapril in the presence of a weight loss regimen: endothelial function and markers of obesity in patients with the metabolic syndrome,” Preventive cardiology, vol. 10, no. 4, pp. 204–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. de las Heras, M. Valero, B. Martín-Fernández et al., “Effect of rosuvastatin on metabolic and endocrine alterations induced by high fat-diet in rats,” in Proceedings of the 4th International Congress on Prediabetes and Metabolic Syndrome, p. 46, Madrid, Spain, 2011.
  15. R. S. Rivlin, “Historical perspective on the use of garlic,” Journal of Nutrition, vol. 131, no. 3, pp. 951S–954S, 2001. View at Google Scholar
  16. H. Amagase, B. L. Petesch, H. Matsuura, S. Kasuga, and Y. Itakura, “Intake of garlic and its bioactive compounds,” Journal of Nutrition, vol. 131, no. 3s, pp. 955–962, 2001. View at Google Scholar
  17. C. Borek, “Antioxidant health effects of aged garlic extract,” Journal of Nutrition, vol. 131, no. 3, pp. 1010S–1015S, 2001. View at Google Scholar
  18. N. Ide and B. H. S. Lau, “Aged garlic extract attenuates intracellular oxidative stress,” Phytomedicine, vol. 6, no. 2, pp. 125–131, 1999. View at Google Scholar · View at Scopus
  19. S. A. Dillon, G. M. Lowe, D. Billington, and K. Rahman, “Dietary supplementation with aged garlic extract reduces plasma and urine concentrations of 8-iso-prostaglandin F2α in smoking and nonsmoking men and women,” Journal of Nutrition, vol. 132, no. 2, pp. 168–171, 2002. View at Google Scholar · View at Scopus
  20. N. Morihara, I. Sumioka, T. Moriguchi, N. Uda, and E. Kyo, “Aged garlic extract enhances production of nitric oxide,” Life Sciences, vol. 71, no. 5, pp. 509–517, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Y. Silva, C. Villamizar, N. Villamizar et al., “Colombian study to assess the use of noninvasive determination of the endothelium-mediated vasodilation (CANDEV) II. Does location of the occlusion device affects the accuracy of the diagnosis?” Endothelium: Journal of Endothelial Cell Research, vol. 12, no. 3, pp. 107–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Accini, A. Sotomayor, F. Trujillo, J. G. Barrera, L. Bautista, and P. López-Jaramillo, “Colombian study to assess the use of noninvasive determination of endothelium-mediated vasodilatation (CANDEV). Normal values and factors associated,” Endothelium, vol. 8, no. 2, pp. 157–166, 2001. View at Google Scholar · View at Scopus
  23. V. Lahera, C. F. Rueda-Clausen, P. López-Jaramillo, C. Luengas, M. D. P. Oubia, and V. Cachofeiro, “Inflammation but not endothelial dysfunction is associated with the severity of coronary artery disease in dyslipidemic subjects,” Mediators of Inflammation, vol. 2009, Article ID 469169, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. S. Yang, W. J. Lee, T. Funahashi et al., “Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3815–3819, 2001. View at Publisher · View at Google Scholar
  25. C. F. Rueda-Clausen, V. Lahera, J. Calderón et al., “The presence of abdominal obesity is associated with changes in vascular function independently of other cardiovascular risk factors,” International Journal of Cardiology, vol. 139, no. 1, pp. 32–41, 2010. View at Publisher · View at Google Scholar
  26. M. Kumada, S. Kihara, S. Sumitsuji et al., “Association of hypoadiponectinemia with coronary artery disease in men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, pp. 85–89, 2003. View at Publisher · View at Google Scholar
  27. E. Hu, P. Liang, and B. M. Spiegelman, “AdipoQ is a novel adipose-specific gene dysregulated in obesity,” The Journal of Biological Chemistry, vol. 271, no. 18, pp. 10697–10703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Maeda, I. Shimomura, K. Kishida et al., “Diet-induced insulin resistance in mice lacking adiponectin/ACRP30,” Nature Medicine, vol. 8, no. 7, pp. 731–737, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. H. Han, I. Sakuma, E. K. Shin, and K. K. Koh, “Antiatherosclerotic and anti-insulin resistance effects of adiponectin: basic and clinical studies,” Progress in Cardiovascular Diseases, vol. 52, no. 2, pp. 126–140, 2009. View at Publisher · View at Google Scholar
  30. T. Yamauchi, J. Kamon, Y. Minokoshi et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002. View at Publisher · View at Google Scholar
  31. M. B. Joshi, M. Philippova, D. Ivanov, R. Allenspach, P. Erne, and T. J. Resink, “T-cadherin protects endothelial cells from oxidative stress-induced apoptosis,” The FASEB Journal, vol. 19, no. 12, pp. 1737–1739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Arita, S. Kihara, N. Ouchi et al., “Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell,” Circulation, vol. 105, no. 24, pp. 2893–2898, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Trayhurn and I. S. Wood, “Adipokines: inflammation and the pleiotropic role of white adipose tissue,” The British Journal of Nutrition, vol. 92, no. 3, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Lenz and F. B. Diamond Jr., “Obesity: the hormonal milieu,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 15, no. 1, pp. 9–20, 2008. View at Publisher · View at Google Scholar
  35. F. S. Tian, R. Luo, Z. Q. Zhao, Y. Wu, and D. J. Ban, “Blockade of the RAS increases plasma adiponectin in subjects with metabolic syndrome and enhances differentiation and adiponectin expression of human preadipocytes,” Experimental and Clinical Endocrinology and Diabetes, vol. 118, no. 4, pp. 258–265, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Keophiphath, F. Priem, I. Jacquemond-Collet, K. Clément, and D. Lacasa, “1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes,” Journal of Nutrition, vol. 139, no. 11, pp. 2055–2060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Ouchi, M. Ohishi, S. Kihara et al., “Association of hypoadiponectinemia with impaired vasoreactivity,” Hypertension, vol. 42, no. 3, pp. 231–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Hattori, M. Suzuki, S. Hattori, and K. Kasai, “Globular adiponectin upregulates nitric oxide production in vascular endothelial cells,” Diabetologia, vol. 46, no. 11, pp. 1543–1549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Xi, H. Satoh, H. Kase, K. Suzuki, and Y. Hattori, “Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. U. Razny, B. Kiec-Wilk, L. Wator et al., “Increased nitric oxide availability attenuates high fat diet metabolic alterations and gene expression associated with insulin resistance,” Cardiovascular Diabetology, vol. 10, article 68, 2011. View at Publisher · View at Google Scholar
  41. N. Weiss, L. Papatheodorou, N. Morihara, R. Hilge, and N. Ide, “Aged garlic extract restores nitric oxide bioavailability in cultured human endothelial cells even under conditions of homocysteine elevation,” Journal of Ethnopharmacology, vol. 145, no. 1, pp. 162–167, 2013. View at Publisher · View at Google Scholar