Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 290565, 10 pages
http://dx.doi.org/10.1155/2013/290565
Research Article

Pharmacological Inhibition of p38 Mitogen-Activated Protein Kinases Affects KC/CXCL1-Induced Intraluminal Crawling, Transendothelial Migration, and Chemotaxis of Neutrophils In Vivo

Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada

Received 7 November 2012; Revised 15 January 2013; Accepted 29 January 2013

Academic Editor: Dennis D. Taub

Copyright © 2013 Najia Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Kumar and A. Sharma, “Neutrophils: Cinderella of innate immune system,” International Immunopharmacology, vol. 10, no. 11, pp. 1325–1334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Phillipson and P. Kubes, “The neutrophil in vascular inflammation,” Nature Medicine, vol. 17, pp. 1381–1390, 2011. View at Google Scholar
  3. H. F. Langer and T. Chavakis, “Leukocyte—endothelial interactions in inflammation,” Journal of Cellular and Molecular Medicine, vol. 13, no. 7, pp. 1211–1220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Petri, M. Phillipson, and P. Kubes, “The physiology of leukocyte recruitment: an in vivo perspective,” Journal of Immunology, vol. 180, no. 10, pp. 6439–6446, 2008. View at Google Scholar · View at Scopus
  5. M. Phillipson, B. Heit, P. Colarusso, L. Liu, C. M. Ballantyne, and P. Kubes, “Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2569–2575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Wojciechowski and I. H. Sarelius, “Preferential binding of leukocytes to the endothelial junction region in venules in situ,” Microcirculation, vol. 12, no. 4, pp. 349–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Phillipson, B. Heit, S. A. Parsons et al., “Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature,” Journal of Immunology, vol. 182, no. 11, pp. 6870–6878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Schenkel, Z. Mamdouh, and W. A. Muller, “Locomotion of monocytes on endothelium is a critical step during extravasation,” Nature Immunology, vol. 5, no. 4, pp. 393–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Y. Yong, M. S. Koh, and A. Moon, “The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer,” Expert Opinion on Investigational Drugs, vol. 18, no. 12, pp. 1893–1905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Cuenda and S. Rousseau, “p38 MAP-Kinases pathway regulation, function and role in human diseases,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1358–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Schindler, J. B. Monahan, and W. G. Smith, “P38 pathway kinases as anti-inflammatory drug targets,” Journal of Dental Research, vol. 86, no. 9, pp. 800–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. B. Haddad, M. Birrell, K. McCluskie et al., “Role of p38 MAP kinase in LPS-induced airway inflammation in the rat,” British Journal of Pharmacology, vol. 132, no. 8, pp. 1715–1724, 2001. View at Google Scholar · View at Scopus
  13. S. E. Sweeney and G. S. Firestein, “Signal transduction in rheumatoid arthritis,” Current Opinion in Rheumatology, vol. 16, no. 3, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Hollenbach, M. Neumann, M. Vieth, A. Roessner, P. Malfertheiner, and M. Naumann, “Inhibition of p38 MAP kinase- and RICK/NF-κB-signaling suppresses inflammatory bowel disease,” The FASEB Journal, vol. 18, no. 13, pp. 1550–1552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Legos, J. A. Erhardt, R. F. White et al., “SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia,” Brain Research, vol. 892, no. 1, pp. 70–77, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Campbell, C. J. Ciesielski, A. E. Hunt et al., “A novel mechanism for TNF-α regulation by p38 MAPK: involvement of NF-κB with implications for therapy in rheumatoid arthritis,” Journal of Immunology, vol. 173, no. 11, pp. 6928–6937, 2004. View at Google Scholar · View at Scopus
  17. N. Jin, Q. Wang, X. Zhang, D. Jiang, H. Cheng, and K. Zhu, “The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus,” International Immunopharmacology, vol. 11, pp. 1319–1326, 2011. View at Google Scholar
  18. J. C. Lee, S. Kumar, D. E. Griswold, D. C. Underwood, B. J. Votta, and J. L. Adams, “Inhibition of p38 MAP kinase as a therapeutic strategy,” Immunopharmacology, vol. 47, no. 2-3, pp. 185–201, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. L. Zu, J. Qi, A. Gilchrist et al., “p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-α or FMLP stimulation,” Journal of Immunology, vol. 160, no. 4, pp. 1982–1989, 1998. View at Google Scholar · View at Scopus
  20. J. A. Nick, N. J. Avdi, P. Gerwins, G. L. Johnson, and G. S. Worthen, “Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide,” Journal of Immunology, vol. 156, no. 12, pp. 4867–4875, 1996. View at Google Scholar · View at Scopus
  21. D. C. Cara, J. Kaur, M. Forster, D. M. McCafferty, and P. Kubes, “Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo,” Journal of Immunology, vol. 167, no. 11, pp. 6552–6558, 2001. View at Google Scholar · View at Scopus
  22. I. Lantos, P. E. Bender, K. A. Razgaitis et al., “Antiinflammatory activity of 5,6-diaryl-2,3-dihydroimidazo[2,1-b]thiazoles. Isomeric 4-pyridyl and 4-substituted phenyl derivatives,” Journal of Medicinal Chemistry, vol. 27, no. 1, pp. 72–75, 1984. View at Google Scholar · View at Scopus
  23. R. Ben-Levy, S. Hooper, R. Wilson, H. F. Paterson, and C. J. Marshall, “Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2,” Current Biology, vol. 8, no. 19, pp. 1049–1057, 1998. View at Google Scholar · View at Scopus
  24. N. Xu, X. Lei, and L. Liu, “Tracking neutrophil intraluminal crawling, transendothelial migration and chemotaxis in tissue by intravital video microscopy,” The Journal of Visualized Experiments, no. 55, Article ID e3296, 2011. View at Publisher · View at Google Scholar
  25. X. Lei, M. Hossain, S. M. Qadri, and L. Liu, “Different microvascular permeability responses elicited by the CXC chemokines MIP-2 and KC during leukocyte recruitment: role of LSP1,” Biochemical and Biophysical Research Communications, vol. 423, pp. 484–489, 2012. View at Google Scholar
  26. L. Liu, D. C. Cara, J. Kaur et al., “LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration,” Journal of Experimental Medicine, vol. 201, no. 3, pp. 409–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. G. Lieber, S. Webb, B. T. Suratt et al., “The in vitro production and characterization of neutrophils from embryonic stem cells,” Blood, vol. 103, no. 3, pp. 852–859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Buschmann, L. Koch, N. Braach et al., “CXCL1-triggered interaction of LFA1 and ICAM1 control glucose-induced leukocyte recruitment during inflammation in vivo,” Mediators of Inflammation, vol. 2012, Article ID 739176, 12 pages, 2012. View at Publisher · View at Google Scholar
  29. J. Kaur, R. C. Woodman, and P. Kubes, “P38 MAPK: critical molecule in thrombin-induced NF-κB-dependent leukocyte recruitment,” American Journal of Physiology, vol. 284, no. 4, pp. H1095–H1103, 2003. View at Google Scholar · View at Scopus
  30. V. Marin, C. Farnarier, S. Grès, S. Kaplanski, M. S. S. Su, and C. A. Dinarello, “The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment,” Blood, vol. 98, no. 3, pp. 667–673, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. El-Shazly, V. Moonen, M. Mawet et al., “IFN-γ and TNF-α potentiate prostaglandin D2-induced human eosinophil chemotaxis through up-regulation of CRTH2 surface receptor,” International Immunopharmacology, vol. 11, pp. 1864–1870, 2011. View at Google Scholar
  32. M. A. Birrell, S. Wong, K. McCluskie et al., “Second-generation inhibitors demonstrate the involvement of p38 mitogen-activated protein kinase in post-transcriptional modulation of inflammatory mediator production in human and rodent airways,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 3, pp. 1318–1327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. R. Geest, M. Buitenhuis, A. G. Laarhoven et al., “p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPα on serine 21,” Stem Cells, vol. 27, no. 9, pp. 2271–2282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. B. Menon, A. Kotlyarov, and M. Gaestel, “SB202190-induced cell type-specific vacuole formation and defective autophagy do not depend on p38 MAP kinase inhibition,” PLoS One, vol. 6, Article ID e23054, 2011. View at Google Scholar
  35. P. Henklova, R. Vrzal, B. Papouskova et al., “SB203580, a pharmacological inhibitor of p38 MAP kinase transduction pathway activates ERK and JNK MAP kinases in primary cultures of human hepatocytes,” European Journal of Pharmacology, vol. 593, no. 1–3, pp. 16–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Cuenda, J. Rouse, Y. N. Doza et al., “SE 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1,” FEBS Letters, vol. 364, no. 2, pp. 229–233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. P. A. Detmers, D. Zhou, E. Polizzi et al., “Role of stress-activated mitogen-activated protein kinase (p38) in β2- integrin-dependent neutrophil adhesion and the adhesion-dependent oxidative burst,” Journal of Immunology, vol. 161, no. 4, pp. 1921–1929, 1998. View at Google Scholar · View at Scopus
  38. R. E. Eckert, Y. Sharief, and S. L. Jones, “p38 mitogen-activated kinase (MAPK) is essential for equine neutrophil migration,” Veterinary Immunology and Immunopathology, vol. 129, no. 3-4, pp. 181–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. L. Pan, K. Y. Tao, J. H. Guh et al., “The p38 mitogen-activated protein kinase pathway plays a critical role in PAR2-induced endothelial IL-8 production and leukocyte adhesion,” Shock, vol. 30, no. 5, pp. 496–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Santén, A. Mihaescu, M. W. Laschke et al., “p38 MAPK regulates ischemia-reperfusion-induced recruitment of leukocytes in the colon,” Surgery, vol. 145, no. 3, pp. 303–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Tandon, R. I. Sha'afi, and R. S. Thrall, “Neutrophil β2-integrin upregulation is blocked by a p38 MAP kinase inhibitor,” Biochemical and Biophysical Research Communications, vol. 270, no. 3, pp. 858–862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Hepper, J. Schymeinsky, L. T. Weckbach et al., “The mammalian actin-binding protein 1 is critical for spreading and intraluminal crawling of neutrophils under flow conditions,” The Journal of Immunology, vol. 188, pp. 4590–4601, 2012. View at Google Scholar
  43. J. Schymeinsky, A. Sindrilaru, D. Frommhold et al., “The Vav binding site of the non-receptor tyrosine kinase Syk at Tyr 348 is critical for β2 integrin (CD11/CD18)-mediated neutrophil migration,” Blood, vol. 108, no. 12, pp. 3919–3927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Ryan, F. Y. Ma, J. Kanellis, M. Delgado, K. Blease, and D. J. Nikolic-Paterson, “Spleen tyrosine kinase promotes acute neutrophil-mediated glomerular injury via activation of JNK and p38 MAPK in rat nephrotoxic serum nephritis,” Laboratory Investigation, vol. 91, pp. 1727–1738, 2011. View at Google Scholar
  45. M. Kogut, V. K. Lowry, and M. Farnell, “Selective pharmacological inhibitors reveal the role of Syk tyrosine kinase, phospholipase C, phosphatidylinositol-3′-kinase, and p38 mitogen-activated protein kinase in Fc receptor-mediated signaling of chicken heterophil degranulation,” International Immunopharmacology, vol. 2, no. 7, pp. 963–973, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. C. W. Frevert, S. Huang, H. Danaee, J. D. Paulauskis, and L. Kobzik, “Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation,” Journal of Immunology, vol. 154, no. 1, pp. 335–344, 1995. View at Google Scholar · View at Scopus
  47. B. Heit, P. Colarusso, and P. Kubes, “Fundamentally different roles for LFA-1, Mac-1 and α 4-integrin in neutrophil chemotaxis,” Journal of Cell Science, vol. 118, no. 22, pp. 5205–5220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Montecucco, S. Steffens, F. Burger et al., “Tumor necrosis factor-alpha (TNF-α) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1α) on human neutrophils through defined signalling pathways,” Cellular Signalling, vol. 20, no. 3, pp. 557–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Zhang, M. Rahman, S. Zhang et al., “p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury,” Journal of Leukocyte Biology, vol. 91, pp. 137–145, 2012. View at Google Scholar