Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 370715, 8 pages
Review Article

Update on the Pathophysiological Activities of the Cardiac Molecule Cardiotrophin-1 in Obesity

1Division of Cardiology, Faculty of Medicine, University of Geneva and Geneva University Hospital, Foundation for Medical Researches, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
2Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16143 Genoa, Italy

Received 14 February 2013; Revised 20 March 2013; Accepted 21 March 2013

Academic Editor: Fatih Arslan

Copyright © 2013 Mohamed Asrih et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Cardiotrophin-1 (CT-1) is a heart-targeting cytokine that has been reported to exert a variety of activities also in other organs such as the liver, adipose tissue, and atherosclerotic arteries. CT-1 has been shown to induce these effects via binding to a transmembrane receptor, comprising the leukaemia inhibitory factor receptor (LIFRβ) subunit and the glycoprotein 130 (gp130, a common signal transducer). Both local and systemic concentrations of CT-1 have been shown to potentially play a critical role in obesity. For instance, CT-1 plasma concentrations have been shown to be increased in metabolic syndrome (a cluster disease including obesity) probably due to adipose tissue overexpression. Interestingly, treatment with exogenous CT-1 has been shown to improve lipid and glucose metabolism in animal models of obesity. These benefits might suggest a potential therapeutic role for CT-1. However, beyond its beneficial properties, CT-1 has been also shown to induce some adverse effects, such as cardiac hypertrophy and adipose tissue inflammation. Although scientific evidence is still needed, CT-1 might be considered as a potential example of damage/danger-associated molecular pattern (DAMP) in obesity-related cardiovascular diseases. In this narrative review, we aimed at discussing and updating evidence from basic research on the pathophysiological and potential therapeutic roles of CT-1 in obesity.