Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 370715, 8 pages
http://dx.doi.org/10.1155/2013/370715
Review Article

Update on the Pathophysiological Activities of the Cardiac Molecule Cardiotrophin-1 in Obesity

1Division of Cardiology, Faculty of Medicine, University of Geneva and Geneva University Hospital, Foundation for Medical Researches, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
2Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16143 Genoa, Italy

Received 14 February 2013; Revised 20 March 2013; Accepted 21 March 2013

Academic Editor: Fatih Arslan

Copyright © 2013 Mohamed Asrih et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. T. Jung, “Obesity as a disease,” British Medical Bulletin, vol. 53, no. 2, pp. 307–321, 1997. View at Google Scholar · View at Scopus
  2. J. Ärnlöv, E. Ingelsson, J. Sundström, and L. Lind, “Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men,” Circulation, vol. 121, no. 2, pp. 230–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, “The disease burden associated with overweight and obesity,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1523–1529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. I. Miller, S.-H. Choi, P. Wiesner et al., “Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity,” Circulation Research, vol. 108, no. 2, pp. 235–248, 2011. View at Publisher · View at Google Scholar
  5. N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, “Adipokines in inflammation and metabolic disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 85–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. A. Ku, R. Farzaneh-Far, E. Vittinghoff, M. H. Zhang, B. Na, and M. A. Whooley, “Association of low leptin with cardiovascular events and mortality in patients with stable coronary artery disease: the Heart and Soul Study,” Atherosclerosis, vol. 217, no. 2, pp. 503–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. McMahon, B. J. Skaggs, L. Sahakian et al., “High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids,” Annals of the Rheumatic Diseases, vol. 70, no. 9, pp. 1619–1624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Febbraio, “Gp130 receptor ligands as potential therapeutic targets for obesity,” Journal of Clinical Investigation, vol. 117, no. 4, pp. 841–849, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tilg and A. R. Moschen, “Inflammatory mechanisms in the regulation of insulin resistance,” Molecular Medicine, vol. 14, no. 3-4, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Pennica, K. L. King, K. J. Shaw et al., “Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1142–1146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. D. S. Latchman, “Cardiotrophin-1 (CT-1): a novel hypertrophic and cardioprotective agent,” International Journal of Experimental Pathology, vol. 80, no. 4, pp. 189–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Jin, R. Yang, G. A. Keller et al., “In vivo effects of cardiotrophin-1,” Cytokine, vol. 8, no. 12, pp. 920–926, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Natal, M. A. Fortuño, P. Restituto et al., “Cardiotrophin-1 is expressed in adipose tissue and upregulated in the metabolic syndrome,” American Journal of Physiology—Endocrinology and Metabolism, vol. 294, no. 1, pp. E52–E60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zvonic, J. C. Hogan, P. Arbour-Reily, R. L. Mynatt, and J. M. Stephens, “Effects of cardiotrophin on adipocytes,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 47572–47579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Marquès, I. Belza, B. Holtmann, D. Pennica, J. Prieto, and M. Bustos, “Cardiotrophin-1 is an essential factor in the natural defense of the liver against apoptosis,” Hepatology, vol. 45, no. 3, pp. 639–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Iñiguez, C. Berasain, E. Martinez-Ansó et al., “Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning,” Journal of Experimental Medicine, vol. 203, no. 13, pp. 2809–2815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Quiros, P. D. Sánchez-González, F. J. López-Hernández, A. I. Morales, and J. M. López-Novoa, “Cardiotrophin-1 administration prevents the renal toxicity of iodinated contrast media in rats,” Toxicological Sciences, vol. 132, pp. 493–501, 2013. View at Google Scholar
  18. M. J. Moreno-Aliaga, N. Pérez-Echarri, B. Marcos-Gómez et al., “Cardiotrophin-1 is a key regulator of glucose and lipid metabolism,” Cell Metabolism, vol. 14, no. 2, pp. 242–253, 2011. View at Publisher · View at Google Scholar
  19. D. Pennica, T. A. Swanson, K. J. Shaw et al., “Human cardiotrophin-1: protein and gene structure, biological and binding activities, and chromosomal localization,” Cytokine, vol. 8, no. 3, pp. 183–189, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Sheng, D. Pennica, W. I. Wood, and K. R. Chien, “Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival,” Development, vol. 122, no. 2, pp. 419–428, 1996. View at Google Scholar · View at Scopus
  21. K. Yoshida, T. Taga, M. Saito et al., “Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 1, pp. 407–411, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. U. A. K. Betz, W. Bloch, M. van den Broek et al., “Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects,” Journal of Experimental Medicine, vol. 188, no. 10, pp. 1955–1965, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Hirota, J. Chen, U. A. K. Betz et al., “Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress,” Cell, vol. 97, no. 2, pp. 189–198, 1999. View at Google Scholar · View at Scopus
  24. S. Asai, Y. Saito, K. Kuwahara et al., “The heart is a source of circulating cardiotrophin-1 in humans,” Biochemical and Biophysical Research Communications, vol. 279, no. 2, pp. 320–323, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Zolk, L. L. Ng, R. J. O'Brien, M. Weyand, and T. Eschenhagen, “Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance,” Circulation, vol. 106, no. 12, pp. 1442–1446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. N. López-Andrés, L. Calvier, C. Labat et al., “Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice,” Hypertension, vol. 61, no. 1, pp. 120–129, 2013. View at Publisher · View at Google Scholar
  27. M. Ishikawa, Y. Saito, Y. Miyamoto et al., “cDNA cloning of rat cardiotrophin-1 (CT-1): augmented expression of CT-1 gene in ventricle of genetically hypertensive rats,” Biochemical and Biophysical Research Communications, vol. 219, no. 2, pp. 377–381, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Takimoto, T. Aoyama, D. Pennica et al., “Augmented expression of cardiotrophin-1 and its receptor component, gp130, in both left and right ventricles after myocardial infarction in the rat,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 10, pp. 1821–1830, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Robador, G. San Jos, C. Rodrguez et al., “HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia,” Cardiovascular Research, vol. 92, no. 2, pp. 247–255, 2011. View at Publisher · View at Google Scholar
  30. J. Fukuzawa, G. W. Booz, R. A. Hunt et al., “Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy,” Hypertension, vol. 35, no. 6, pp. 1191–1196, 2000. View at Google Scholar · View at Scopus
  31. D. Voges, P. Zwickl, and W. Baumeister, “The 26S proteasome: a molecular machine designed for controlled proteolysis,” Annual Review of Biochemistry, vol. 68, pp. 1015–1068, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Hayashi and D. Faustman, “NOD mice are defective in proteasome production and activation of NF-κB,” Molecular and Cellular Biology, vol. 19, no. 12, pp. 8646–8659, 1999. View at Google Scholar · View at Scopus
  33. S. Hishinuma, M. Funamoto, Y. Fujio, K. Kunisada, and K. Yamauchi-Takihara, “Hypoxic stress induces cardiotrophin-1 expression in cardiac myocytes,” Biochemical and Biophysical Research Communications, vol. 264, no. 2, pp. 436–440, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Ateghang, M. Wartenberg, M. Gassmann, and H. Sauer, “Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1α and intracellular reactive oxygen species,” Journal of Cell Science, vol. 119, no. 6, pp. 1043–1052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. N. López-Andrés, C. Iñigo, I. Gallego, J. Díez, and M. A. Fortuño, “Aldosterone induces cardiotrophin-1 expression in HL-1 adult cardiomyocytes,” Endocrinology, vol. 149, no. 10, pp. 4970–4978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. S. Jiang, M. Jeyaraman, G. B. Wen et al., “High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 1, pp. 222–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Janjua, K. M. Lawrence, L. L. Ng, and D. S. Latchman, “The cardioprotective agent urocortin induces expression of CT-1,” Cardiovascular Toxicology, vol. 3, no. 3, pp. 255–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Marney and N. J. Brown, “Aldosterone and end-organ damage,” Clinical Science, vol. 113, no. 5-6, pp. 267–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Otkjaer, H. Holtmann, T. W. Kragstrup et al., “The p38 MAPK regulates IL-24 expression by stabilization of the 3′ UTR of IL-24 mRNA,” PLoS One, vol. 5, no. 1, Article ID e8671, 2010. View at Publisher · View at Google Scholar
  40. A. Ilercil, R. B. Devereux, M. J. Roman et al., “Relationship of impaired glucose tolerance to left ventricular structure and function: the strong heart study,” American Heart Journal, vol. 141, no. 6, pp. 992–998, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Q. Galvan, F. Galetta, A. Natali et al., “Insulin resistance and hyperinsulinemia: no independent relation to left ventricular mass in humans,” Circulation, vol. 102, no. 18, pp. 2233–2238, 2000. View at Google Scholar · View at Scopus
  42. J. Liu, Z. Liu, F. Huang, Z. Xing, H. Wang, and Z. Li, “Pioglitazone inhibits hypertrophy induced by high glucose and insulin in cultured neonatal rat cardiomyocytes,” Pharmazie, vol. 62, no. 12, pp. 925–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Calabrò, G. Limongelli, L. Riegler et al., “Novel insights into the role of cardiotrophin-1 in cardiovascular diseases,” Journal of Molecular and Cellular Cardiology, vol. 46, no. 2, pp. 142–148, 2009. View at Publisher · View at Google Scholar
  44. K. C. Wollert, T. Taga, M. Saito et al., “Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy: assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor-dependent pathways,” Journal of Biological Chemistry, vol. 271, no. 16, pp. 9535–9545, 1996. View at Google Scholar · View at Scopus
  45. R. Craig, M. Wagner, T. McCardle, A. G. Craig, and C. C. Glembotski, “The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-κB,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 37621–37629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Takahashi, Y. Saito, K. Kuwahara et al., “Hypertrophic responses to cardiotrophin-1 are not mediated by STAT3, but via a MEK5-ERK5 pathway in cultured cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 38, no. 1, pp. 185–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. P. C. Heinrich, I. Behrmann, G. Muller-Newen, F. Schaper, and L. Graeve, “Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway,” Biochemical Journal, vol. 334, part 2, pp. 297–314, 1998. View at Google Scholar · View at Scopus
  48. Z. J. Tian, W. Cui, Y. J. Li et al., “Different contributions of STAT3, ERK1/2, and PI3-K signaling to cardiomyocyte hypertrophy by cardiotrophin-1,” Acta Pharmacologica Sinica, vol. 25, no. 9, pp. 1157–1164, 2004. View at Google Scholar · View at Scopus
  49. P. Sartipy and D. J. Loskutoff, “Monocyte chemoattractant protein 1 in obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7265–7270, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. J. I. Odegaard and A. Chawla, “Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis,” Science, vol. 339, no. 6116, pp. 172–177, 2013. View at Publisher · View at Google Scholar
  52. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  53. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Y. Donath and S. E. Shoelson, “Type 2 diabetes as an inflammatory disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 98–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. N. López-Andrés, A. Rousseau, R. Akhtar et al., “Cardiotrophin 1 is involved in cardiac, vascular, and renal fibrosis and dysfunction,” Hypertension, vol. 60, no. 2, pp. 563–573, 2012. View at Publisher · View at Google Scholar
  56. G. Limongelli, P. Calabrò, V. Maddaloni et al., “Cardiotrophin-1 and TNF-α circulating levels at rest and during cardiopulmonary exercise test in athletes and healthy individuals,” Cytokine, vol. 50, no. 3, pp. 245–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Jean-Louis, F. Zizi, L. T. Clark, C. D. Brown, and S. I. McFarlane, “Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components,” Journal of Clinical Sleep Medicine, vol. 4, no. 3, pp. 261–272, 2008. View at Google Scholar · View at Scopus
  58. C. Jung, M. Fritzenwanger, and H. R. Figulla, “Cardiotrophin-1 in adolescents: impact of obesity and blood pressure,” Hypertension, vol. 52, article e6, 2008. View at Google Scholar · View at Scopus
  59. M. Asrih, S. Gardier, I. Papageorgiou, and C. Montessuit, “Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 56, no. 1, pp. 106–115, 2013. View at Publisher · View at Google Scholar
  60. O. Zolk, S. Engmann, F. Münzel, and R. Krajcik, “Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue,” American Journal of Physiology—Endocrinology and Metabolism, vol. 288, no. 6, pp. E1214–E1221, 2005. View at Publisher · View at Google Scholar · View at Scopus